Optic nerve head drusen

Patricia L. Davis, MD and Walter M. Jay, MD

From the Department of Ophthalmology, Loyola University Medical Center, Maywood, IL, USA

Abstract

Optic disc drusen are congenital and developmental anomalies of the optic nerve head seen commonly in clinical practice, often as an incidental ophthalmologic finding during routine exams. Optic disc drusen are a form of calcific degeneration in some of the axons of the optic nerve. Visual acuity is often not affected but the visual fields of these patients can be abnormal and deteriorate over time. Optic disc drusen are familial and are not uncommon. They are thought to be the result of pathology at the level of the optic nerve head itself. The diagnosis can be made with clinical findings combined with B scan ultrasound and computed tomography. In addition, newer modalities using optic nerve head tomography are proving to be very useful. Since children as well as adults are affected, it is important to consider optic nerve head drusen in the differential diagnosis of papilledema or optic nerve swelling.

Definition

Optic disc drusen are a form of calcific degeneration in some of the axons of the optic nerve. The name comes from a 16th century German word, *druse*, which geologic miners used to refer to rocks with crystal-filled centers.¹ In 1858 Müller used the plural form of the word, drusen, to describe calcific depositions found in histological specimens of optic nerves. Histologically, the colloidal substance was found intra- and extracellularly.^{2,3} The clinical findings⁴ and associated visual field defects were described years later.^{4–7} Hyaline or colloid bodies are synonyms for drusen.

Prevalence and pattern of inheritance

Studies have shown the overall prevalence to be between less than 0.4% and 3.7%.^{18,9} Lorentzen and later others examined family members of patients with drusen. Lorentzen found that the incidence of optic disc drusen increases up to ten

times that of general population in family members. Genetically, optic disc drusen have an autosomal dominant pattern of inheritance.^{10,11} Antcliff found that family members had either buried drusen or anomalous vessels and/or no optic cup.¹² Inheritance of small optic disc size is thought to be a risk factor in drusen formation. They appear more often in whites and rarely in blacks. Small inherited optic disc size and mesodermal dysplasia resulting in vascular dysplasia are factors that may influence the development of optic disc drusen.^{8,13–15}

Clinical signs and symptoms

Most patients with optic disc drusen are asymptomatic. Up to 8.6% have reported transient visual obscurations.¹⁶ An afferent pupillary defect is present when involvement is asymmetric. Visual field defects appear in nearly 90% of cases.^{1,17} If progressive and severe the loss of field can lead to blindness, even in young adults.^{16,18,19} The majority of visual field losses are peripheral in nature. Progressive central visual loss is rare. When visible, optic disc drusen look like yellow crystals within the substance of the optic nerve head. The margins are often indistinct (Fig. 1). Papilledema is what optic disc drusen mimic.²⁰ The difference is that with papilledema the vessels are obscured by nerve fiber layer edema that involves the peripapillary retina. Other signs of true papilledema are cotton wool spots, multiple hemorrhages around the disc, hyperemia, venous congestion, Patton's lines and exudates. It is important to distinguish pseudopapilledema from true papilledema. In true papilledema there is increased intracranial pressure. Pseudopapilledema, as the name suggests, occurs when the optic nerves look swollen because of increased intracranial pressure. Optic disc drusen is a common form of pseudopapilledema. Initially, the optic disc appears swollen and cupless because the optic disc drusen

Correspondence: Patricia L. Davis, M.D., Loyola University Medical Center, Department of Ophthalmology, 2160 South First Ave., Maywood, IL 60153, USA. Tel. +1630-527-1920; Fax: +1630-527-0125; E-mail: idocmd@comcast.net

Figure 1A&B. Bilateral optic nerve head drusen. The margins are not sharp and the vessels seem unaffected, differing from papilledema.

Figure 2A&B. Fundus photographs of the right and left eyes of a 5-year-old boy. The margins of the discs are blurred and the cups are nonexistent. The surfaces are lumpy bumpy. There are no signs of acute or chronic papilledema. The child's MRI and lumbar puncture were within normal limits, including the opening pressure.

are buried. Relying on clinical appearance alone can lead to missing true papilledema. Diagnostic testing must follow the clinical exam. Children are often first diagnosed with pseudopapilledema after referral to the ophthalmologist (Fig. 2A&B).

Hoover and others have studied the physical changes in optic nerves with disc drusen over time. The appearance of colloid bodies occurs during the teenage years through early adulthood (Fig. 3A–D).²¹ Optic disc drusen, over time, appear as elevated, lumpy irregularities on the anteriormost portion of the disc.²² The nasal optic disc is the usual place exposed drusen are noted. These lesions are bilateral in more than 85% of cases, buried or visible.^{1,21,23} The optic disc is anomalous in other ways by being small with abnormal

branching of the vessels. Ciloretinal arteries are associated with optic disc drusen.^{24,25} Often the scleral canal is small.²⁶ The optic nerve that contains drusen is anomalous by nature. In addition to structural abnormalities, vascular anomalies are seen such as; bi- and trifurcations of vessels, tortuosity of vessels and opticociliary shunts.²⁶

Visual field defects can first appear during childhood; even before drusen appear on the disc.²⁷ Hoover showed that the mean age for detection was 14 years old (Fig. 4A–D).²¹ Over time the visual field defects become more numerous and worsen in degree of severity. The pattern is most commonly an arcuate nerve fiber layer defect.^{20,28} The changes in the visual field occur along with appearance and enlargement of optic disc drusen.²⁸ An afferent pupillary defect accom-

Figure 3A–D. B scan ultrasounds of the right and left eyes of a 15-year-old boy with optic nerve head drusen. The nerve head of each eye has an area of hyperechoic reflections consistent with drusen. The lower set of scans has a higher gain, exposing the drusen more clearly.

panies asymmetric optic nerve function and is therefore present in the more affected eye. This may be a general sign to tip off the physician of the presence of an optic neuropathy. The afferent pupillary defect can be seen in a patient with asymmetric visual field defects and drusen of the nerve.²⁹ The incidence of abnormal visual field has been reported by various authors to occur in nearly 90% of adult patients.^{11,15,17,28,30} As with glaucoma and other insidious causes of visual field degradation, the defects go unnoticed and progress over time (Fig. 5A&B).^{28,30-33}

There are numerous theories about the evolution of visual field defects due to optic disc drusen. The pathogenesis of optic disc drusen is thought to be due to slowed axoplasmic flow, thus forming calcific excrescences.^{3,12,34,35} Anatomy of the optic disc may play a role, due to small size and congenital dysplasia.^{8,13,14,35,36} The field defects could arise from pressure on the nerve fiber layer resulting from a combination of the presence of the optic disc drusen and vascular compromise.7,11

Clinical diagnosis and progression

A number of diagnostic tests are available for the detection of drusen. Fundoscopic evaluation with direct and indirect ophthalmoscopy is useful in detection and re-evaluation of abnormal optic nerves. Disc photographs and drawings have been a mainstay (Figs. 2A, B, 4C&D). Visual field testing over time is useful in detection of malfunction of the optic nerve and progression of visual field defects.³⁷ B-scan ultrasonography can expose calcium deposits even if they are invisible ophthalmoscopically. B scan ultrasound is easy even for the smallest and most uncooperative patients.³⁸ This test has been proven to be the most reliable of all techniques available. The use of high gain helps to isolate optic disc drusen (Fig. 3A-D). Deeper lesions can be visualized due to the highly reflective nature of drusen.^{23,39-42} Fluorescein angiography is also useful. In the pre-injection phase optic disc optic disc drusen demonstrate autofluorescence.⁴³ Autofluorescence is a phenomenon in which exposed optic disc

Figure 4A–D. The same 15-year-old boy. A&B. Humphrey visual field reveals an inferior nasal step OD. C&D. Disc photos OD and OS. The margins are fuzzy but the vessels remain easily identifiable.

RIGHTSLINK()

NOME				-		-			_		-		_	-		-	-				-	-				DOB:	EFT	1988
NAME : ENTRAL 24-2 T	VPF	cune	0 1	rer		-	_		_	-		_		_	10		-	1	D:		-	_	_	-	_	008+		1996
CUINN 54-5 1	UKE.	ənul	UI	291																								
IXATION MONIT	OR:	GRZ	E/BI	LING	SPO	T					STIN	ULUS:	ш.	WHIT	E									.6 MM			: 11-14-2883	
IXATION TRAGE	T:	CENT	RAL								BACK	GROUN	D: 31.	.5 AS	8					VISU	AL A	CUIT	ť=				1 3114 PM	
IXATION LOSSE	5:	B/14									STRA	TEGY:	SITR	-STAN	DARO				1	RX:		DS		0C X	\$	ACE	15	
ALSE POS ERRO	RS:	1	z																									
ALSE NEG ERRO	RS:	1	X																									
EST DURATION:	85	:34										t														t		
OVER: OFF																									ana an	122 T 127 22		
WYER- OFF										26	28	+ 26	2	2										, A :: ; A :	1000	1111,3,3 1111,3,3		
												-												λ-λ::::: λ-λ:::::	1.2.2			
									25	26	27	28	3	B	28													
							2	R	38	28	38	1 38	3		29	27						::::						
												1.																
				38	+		2	-	-27-	38	31	31			32	27	2	-		+								-+ 30
				1	5.5		3	8	8	38	33	32	3	2	32	27	2	7		1593		3		3		1000000		
							2	9	31	31	32	31	3	2	31	27							3	Č.			::::::::::::::::::::::::::::::::::::::	
							1	-				t										::		:::::		·		
									31	38	38	38	3	1	29								··:::	2.22				
										30	29	+ 28	3	8										·:::::				
												1																
												+														+		
			-4	-1	0 -5		9										-2	-8	-3	-7								
		-6	-5	-5	-5		2	-3								-4	-3	-3	-3	8	-2							
54	-4	-2	-5	-4	4		-3	-4	-4						-2	0	-3	-2	-2	-1	-2	-2				THE		
3	-3		-4	-3	-4		4	-1	-4	-2					-1		-2	-1	-2	-2	1	-2	8			JITHIK NORMAL LI	INTTO	
10	-2		-4	-2	-3		-3	-1	-5	-3					8		-2	8	-1	-1	8	-3	-1			VIININ NUKAHE E.	INTIS	
£9	-3	-2	-2	-2	-1		-2	-2	-4						-1	8	-1	8	-1	8	0	-2					*	
		-1	-2	-3	-3		-2	-3								1	8	-1	-1	8	-1					1D -3.21 (18 P (2%)	
			-2	-2	-1	•	-1										8	8	-1	1						PSO 1.48 0		
TOTAL											÷.		PATT	FDH														
DEVIATION					÷.									ATION					i.									
octani ton																												
			•	Ħ	-		*										Č.	\$2	ŀ	12								
		2		2				•								•		•	ŀ	•	•							
	;;	*	林		1			::	::						•	•	्र	•			•	82						
<u></u>	÷		€.	_	3	_		1	_	•					*		•	•	·	•	•	•	•					
	•		2	•	×			•	2	•					•		•	•	ŀ	•	•	•	•					
	•	1		1.5	1	:		•							•	•	•	•	ŀ	٠	•	•						
		•	•	**	1	:	•									·		•		٠	1							
			•	•	1.		•										٠	٠	1	٠								
												:: (5%															
												2. (
			14									*																
													8.5%															
	175	_	-	-	-		_	1.545	_			-	_			-	_	_	_	_	-	-	_		_			-
Alerala.	-	-	~	-	~	-		-	-		عسار	.,		-	 ,	-												
L	-	-	-	-	-		-	-	-		_	_		_	_		-	-	-	-			-		-			
																										E 1994-2008 H	UNPHREY SYST	EMS

В

Figure 4A-D. Continued.

drusen naturally glow in the dark when viewed through the fundus camera prior to injection of fluorescein. Post fluorescein injection, heterogeneous hyperfluorescence is seen in the early phase. In the late phase staining is observed (Fig. 6). The normal capillary network can be seen coursing over buried drusen.43 Computed Tomography (CT) and even facial X-rays can show the presence of calcium in the optic Nerve, but small lesions can be missed (Fig. 7A&B).^{26,39,43} Electroretinograms are useful when nerve fiber layer (NFL) and visual acuity are subnormal. Scholl et al. evaluated 24 eyes with optic disc drusen. Nineteen (79%) showed reduction of the pattern ERG (pERG) or absence of the N95 component. These two findings reflect poor ganglion cell layer function.44 Visual evoked potentials (VEP) are abnormal in more than 95% of cases due to peripapillary nerve fiber layer malfunction according to Stevens.⁴⁵ In fact the p100 latency is prolonged just like those found in optic nerves affected by demyelinating disease. Therefore, the VEP alone should not be used to make a diagnosis of optic neuritis alone due to similar findings in optic disc drusen.⁴⁶

Newer technologies are available. Tomography of the nerve head is proving to be useful. Optical Coherence Tomography (OCT), GDx[®] (Scanning Laser Polarimetry) and Heidelberg Retinal Tomography (HRT) are commercially available (Figs. 8-14). These tests examine nerve fiber layer thickness. Nerve fiber layer (NFL) loss is a pathologic finding observed with optic disc drusen. The three dimensional views are useful as well. Thinning or loss can be seen with red free photography, with ophthalmoscopy with the red free light and histologically.^{47–49} Nerve fiber analysis by way of digital photography and computerized assessment offers a quantifiable methodology. It is reproducible over time by different observers.⁵⁰ This application is more reliable than red free photography.^{48,51} Often, the appearance of the optic nerve head and visual field do not correlate with the NFL analysis. The NFL analysis may show progressive pathologic changes prior to detection by other methods. Studies have shown

these modalities have the ability to show thinning of the peripapillary NFL thinning associated with optic disc drusen.51,52 This is helpful where glaucoma and drusen exist simultaneously.51,53 Another simultaneous entity to consider in light of field loss is pseudotumor cerebri.⁵⁵ Pseudotumor cerebri, like optic disc drusen, is another diagnosis of exclusion. People who suffer from Pseudotumor cerebri have few symptoms. History of transient visual obscurations, diplopia, visual field loss and headaches, among other nonspecific complaints are noted in these patients. Diagnostic testing reveals normal neuroimaging. Lumbar puncture is notable for an opening pressure greater than 200-250 mmHg. The cerebrospinal fluid analysis is normal. Optic disc drusen, glaucoma and pseudotumor cerebri all have similar visual field defects. It is important to investigate the possibility of a second disease if clinical signs warrant it.

Complications of drusen

Pathologic vascular abnormalities occur in a variety of ways in association withoptic disc drusen. Optociliary shunts are collateral networks that form between the retinal venous system and the choroidal network as a result of increased central retinal venous pressure.⁵⁷ As optic disc drusen enlarge with age shunt vessels be come more apparent.

Vascular occlusions can occur due to the structural abnormality of the nerve head. Anterior ischemic optic neuropathy (AION) is the most common cause of visual loss in patients with optic disc drusen.⁵⁸ The resulting vascular occlusion is in part due to anatomic predisposition and disc crowding over time.⁵⁸ These patients have a form of what has been referred to as the "disc at risk" because their discs and canals are smaller than those of normals.^{58,59} Auw-Haedrich asserts that these patients are more likely to have an ischemic event of the optic nerve than those who possess small canals without drusen because the arteries feeding the nerve

227

Figure 5A&B. Humphrey visual fields of a 47- year-old woman with optic disc drusen. Her intraocular pressures are normal. She has significant field loss bilaterally.

Figure 5A&B. Continued.

Figure 6A. Red free photo of drusen. Note the blurry margin of the disc, the unobscured vessels and the absent cup. *Figure 6B.* Fluorescein Angiogram arteriovenous phase hyperfluorescence demonstrating late staining without leakage.

А

Semin Ophthalmol Downloaded from informahealthcare.com by University Of Pittsburgh on 04/19/10 For personal use only.

Figure 7A&B. Two views of a CT scan demonstrating the calcific nature of optic nerve head drusen in the nerve heads of a 22-year-old man.

В

STRATUS OCT RNFL Thickness Average Analysis Report - Ver. 3.0

Physician:

Figure 8. OCT of the same 5-year-old in Fig. 2A&B. Note the increased thickness of the nerve heads.

ZEISS

Figure 9A&B. GDx® nerve fiber analysis of the same 47-year-old woman in figs. 5A&B with optic nerve head drusen. The nerves are elevated or thickened bilaterally. There is little change over a one-year period. The left eye has tortuous vessels. Both have ill-defined margins. Her MRI was negative.

GDx® Nerve Fiber Analyzer Symmetry Analysis

Age: 46, Gender: Female, Race: White

ID # :

Print Date : 16-Nov-2002

NERVE FIBER ANALYSIS

2	Act. Value	Probability	Act. Value	Probability	Difference		Act. Value	Probability	Act. Value	Probability	Difference
Symmetry	0.82	6.5%	0.88		-0.05	The Number	56		53	-	
Superior Ratio	1.33	3.8%	1.64		-0.32	Ellipse Modulation	1.79		2.26		-0.48
Inferior Ratio	1.61		1.87		-0.26	Average Thickness	79		83		-4
Superior/Nasal	1.41	1.2%	1.32	0.6%	0.09	Ellipse Average	83		93		-9
Max. Modulation	0.71	2.7%	0.87	5.6%	-0.17	Superior Average	76		85		-8
Superior Maximum	86		88		-2	Inferior Average	101		106		-5
Inferior Maximum	105		100		5	Superior Integral	0.229		0.251		-0.022

©1992-1999 Lasor Diagnostic Technologies, Inc., All Rights Reserved GDx® Version 2.0.09

9550 Waples Street, Suite #105 San Diego, CA 92121 (619)558-9144 FAX: (619)558-9145 www.laserdiagnostic.com

А

GDx® Nerve Fiber Analyzer Symmetry Analysis

Age: 46, Gender: Female, Race: White

ID # :

Print Date : 16-Nov-2002

							The Tener	rootening	mus. Funde	ricoursy	Gardience
Symmetry	0.79	3.1%	0.78	3.1%	0.00	The Number	54		58		
Superior Ratio	1.50	2.6%	1.48	2.4%	0.02	Ellipse Modulation	1.57	7.4%	1.25	3.0%	0.32
Inferior Ratio	1.91		1.89		0.02	Average Thickness	92		95	1	-3
Superior/Nasal	1.25	1.5%	1.26	1.7%	-0.02	Ellipse Average	94		97		-3
Max. Modulation	0.91	5,3%	0.89	4.8%	0.02	Superior Average	98		100		-2
Superior Maximum	96		98		-2	Inferior Average	101		111		-9
Inferior Maximum	122		124		-3	Superior Integral	0.322		0.327		-0.005

9550 Waples Street, Suite #105 San Diego, CA 92121 (619)558-9144 FAX: (619)558-9145 www.laserdiagnostic.com

В

Figure 10A&B. HRT nerve fiber layer analysis of the same 47-year-old woman. The NFL is thickened, cup nonexistent and vessels are tortuous. All findings consistent with drusen.

RIGHTSLINK

Examination: Da Scan: Fo 0.0 0.4 0.8 1.2 1.6 2.0 2 0.0 0.4 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.4 - 0.8 0.0 0.4 0.8 1.2 1.6 2.0 2	nm)	03 Depth: 3.25 m	Pat-ID:
Scan: Fo	ocus: -9.00 dpt	Depth: 3.25 m	z [mm] 4 0.0 0.4 0.8 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4
x [m 0.0 0.4 0.8 1.2 1.6 2.0 2 0.4 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 0.8 0.0 4.4 0.8 0.0 0.4 0.8 1.2 1.2 0.0 2.4 2.4 2.8 3.2 3.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	nm)		z [mm] 4 0.0 0.4 0.8 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4
x [m 0.0 0.4 0.8 1.2 1.6 2.0 2 0.4 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 0.8 0.0 4.4 0.8 0.0 0.4 0.8 1.2 1.2 0.0 1.2 1.6 0.0 0.4 0.8 1.2 1.6 0.0 0.4 0.8 1.2 1.6 0.0 0.4 0.8 1.2 1.6 0.0 0.4 0.8 1.2 1.6 0.0 0.4 0.8 1.2 1.6 0.0 0.4 0.8 1.2 1.6 0.0 0.4 0.8 1.2 1.6 0.0 0.4 0.8 1.2 1.6 0.0 0.4 0.8 1.2 1.6 0.0 0.4 0.8 1.2 1.6 0.0 0.4 0.8 0.0 0.4 0.8 0.0 0.0 0.0 0.4 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	nm)		z [mm] 4 0.0 0.4 0.8 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4
0.0 0.4 0.8 1.2 1.6 2.0 2 0.0 0.4 0.8 1.2 1.6 1.2 1.6 2.4 2.8 3.2 3.6 4.0 4.4 0.8 0.0 0.4 0.8 1.2 0.0 0.4 0.8 0.0 0.4 0.8 0.0 0.4 0.8 0.0 0.4 0.8 0.0 0.4 0.8 0.0 0.4 0.8 0.0 0.4 0.8 0.0 0.4 0.8 0.8 0.0 0.4 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8			
0.0	14 2.8 3.2 3.6 4.0		
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 - - - - - - - - - - - - -	mmmm		
0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 - 1.2 0.8 - 0.4 0.0 0.0 0.4 0.8 1.2 1.6 2.0 2	mmmm		
1.2 - 1.6 - 2.0 - 2.4 - 2.8 - 3.2 - 3.6 - 4.0 - 4.4 - - 1.2 - 0.8 - 0.4 - 0.0 0.4 0.8 1.2 1.5 2.0 2	mmm	Jan Carlor	
1.6 - 2.0 - 2.4 - 2.8 - 3.6 - 4.0 - 4.4 - - 1.2 - 0.8 - 0.4 - 0.0 0.4 0.8 1.2 1.6 2.0 2	mmm	Jan	
2.0 - 2.4 - 2.8 - 3.2 - 3.6 - 4.0 - 4.4 - - - 1.2 - - 0.8 - - 0.4 - 0.0 - 0.4 0.8 1.2 1.6 2.0 2	mmm	\$ 	
2.8 - 3.2 - 3.6 - 4.0 - 4.4 - -1.2 - 0.8 - -0.4 - 0.0 - 0.4 0.8 1.2 1.5 2.0 2	mmmm	×	
2.8 - 3.2 - 3.6 - 4.0 - 4.4 - -1.2 - 0.8 - -0.4 - 0.0 - 0.4 0.8 1.2 1.5 2.0 2	mmm	35 - 0	
2.8 - 3.2 - 3.6 - 4.0 - 4.4 - -1.2 - 0.8 - 0.4 - 0.0 - 0.4 0.8 1.2 1.6 2.0 2	mmm	355 TO 100	
3.6 4.0 4.4 -1.2 -0.8 -0.4 -0.0 0.0 0.0 0.0 0.4 0.8 1.2 1.6 2.0 2	mmm		
4.0 - 4.4 - -1.2 -0.8 - -0.4 - 0.0 - 0.4 - 0.8 - 0.0 - 0.4 0.8 1.2 1.6 2.0 2	mmmmm		
4.4 -	mmm		
4.4 -	mm		
-1.2 -0.8 -0.4 -0.4 -0.4 -0.4 -0.0 -0.4 -0.4 -0.4	mm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
0.8 - 0.4 - 0.8 - 0.4 - 0.8 - 0.0 0.4 0.8 1.2 1.6 2.0 2	mm	×	TS 0 HS 0 G H G N Q T Q T Q
-0.8 - -0.4 - -0.0 - -0.4 - -0.0 - -0.4 - -0.8 - -0.0 - -0.4 - -0.8 - -0.4 - -0.8 - -0.80.8 - -0.8 - -0.80.80.80.80.80.80.80.80.80.80.80.80.80.80.80.80.8	mm	×~~	
0.4 0.0 0.4 0.8 0.0 0.0 0.4 0.8 1.2 1.6 2.0 2	www	~~	
0.4 - 0.8 - 0.0 0.4 0.8 1.2 1.6 2.0 2	, Jur	m	
0.4 - 0.8 - 0.0 0.4 0.8 1.2 1.6 2.0 2			
0.8			
0.0 0.4 0.8 1.2 1.6 2.0 2			
	2.4 2.8 3.2 3.6 4.0	0 4.4 0 4	15 90 135 180 225 270 315 36
	nm)		angle [*]
Stereometric A	ashele ONH	1	
Stereometric A	marysis own		Predkad,
	Disk Area	4.102 mm²	
	Cup Area	0.000 mm*	Low #5.0%
	Rim Area	4.101 mm ²	
	Cup Volume	0.000 cmm	Law 99.0%
	Rim Volume	1.788 cmm	
0.0077720833	sk Area Ratio Jp/Disk Ratio	0.000	Low 99.9% ⁷ global temporal templum templinf nasal naila
	an Cup Depth	0.020 mm	
	m Cup Depth	0.084 mm	Comments:
	ape Measure	-0.327	
Height Varia	tion Contour	0.391 mm	
	FL Thickness	0.233 mm	
RNFL Cross Se		1.677 mm*	
	rence Height	0.074 mm	Datas Jul/24/2002 Signatures
Topogra	phy Std Dev.	34 µm	Date: Jul/24/2003 Signature:

RIGHTSLINK()

Figure 11A&B. Three dimensional HRT view of the left eye of the same 47-year-old woman. Note the vessels overlying the NFL without being obscured and the scleral crescent.

become ischemic as the drusen enlarge.²⁶ Unlike the typical person suffering from the non-arteritic form of AION, patients with optic nerve drusen and AION are younger. They can be in their teens or early adulthood when AION occurs. In addition, these patients do not typically suffer from the usual risk factors seen associated with AION.^{8,18,20,23,37,58,60-62}

Other types of vascular occlusions occur with optic nerve drusen. Central retinal artery occlusion (CRAO) has been reported in children and adults.^{23,66,67} The pathophysiology in these cases is evidently not just drusen alone. There are other conditions which link with drusen in the production of CRAO. Systemic hypertension,⁶³ migraine,^{28,64,65} oral contraceptives,⁶⁴ high altitude⁶⁸ and atrioseptal defect⁶⁸ have been reported. Central retinal vein occlusion (CRVO), on the other hand, may occur in conjunction with optic disc drusen because veins are more easily compressed than arteries.^{69,70} One study linked contraceptive use with drusen resulting in CRVO.⁷¹ Peripapillary subretinal neovascularization secondary to optic disc drusen has been reported in children and young adults.^{13,72,73} These neovascular membranes do occasionally hemorrhage. The subsequent visual symptoms usually resolve with mild to moderate visual loss. Harris et al. reported that six of seven cases of patients with optic disc drusen and neovascular membranes regained vision of at least 20/40 without treatment.74 They recommended observation of patients with optic disc drusen and neovascular membranes.75

Hemorrhages associated with optic disc drusen, other than those previously mentioned, include superficial flame-shaped hemorrhages and deep peripapillary hemorrhages. The splinter hemorrhages emerge on or adjacent to the disc. This is unlike papilledema, which usually has multiple flame-shaped hemorrhages in the NFL43 that can obscure vision. Patients with optic disc drusen have hemorrhages appearing singly and are visually insignificant.^{28,76,77} Deeper hemorrhages can appear encircling the disc in the subretinal or subretinal

pigment epithelial spaces. The hemorrhages may be due to occult neovascularization, direct venous compression or vascular wall erosion by sharp-edged drusen.61,75

Systemic diseases associated with drusen

The association between drusen and retinitis pigmentosa (RP) has long been Known.⁷⁸ The incidence of the combination has been reported to be between 0% and 10%.57,79 These disc drusen appear different from idiopathic disc drusen. Drusen associated with RP have normal-sized discs and scleral canals.^{80,81} There is no disc elevation.³⁵

Another systemic disease associated with drusen is pseudoxanthoma elasticum (PXE). The prevalence of PXE is 1:160000 in the general population.⁸² Angioid streaks, also a rare disease, occur in 1:80,000.83 But 85% of patients with PXE have angioid streaks.⁸⁴ Disc drusen have been reported in 4.5%⁸⁵ to 21%⁸⁶ of patients with angioid streaks. The reason for the association may be abnormal mineralization of tissues leading to the formation of angioid streaks and drusen.87

Treatment for optic disc drusen

Several treatment modalities can be considered in cases of optic disc drusen with progressive visual loss. In the presence of visual field loss and optic disc drusen enlargement intraocular pressure lowering medications should be considered.^{12,31,88-90} In the case of simultaneous glaucoma with optic disc drusen, visual field loss may be due to either entity. These patients must be followed carefully with serial visual fields, nerve fiber analysis, and repeated intraocular pressure testing. Surgical treatment consisting of optic nerve sheath fenestration is controversial and has been reported to be successful by only one author.91,92 Laser photocoagulation of

А

Patient:				
	Sex: female D	OB: 1950	Pat-ID:	
Examination:	Date: Jul/31/20	03		O
Scan:	Focus: 1.00 dpt	Depth: 3.25 mm	Operator: LJ IOP:	2
00 04 08 12 1	x [mm] 6 20 24 28 32 3		[mm]	x (mm) 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
0.0	2.0 2.4 2.0 5.2 5			0.0
0.4 -	C Alasta	X		-0.4
0.8 -	AF H I			-0.8
1.2 -	and the second second			-1.2
1.6 -			Cas N.S.	- 1.6
the second se		5		-2.0
2.0 -			-A-	-2.4
>2.4 -	+		1. 18 T	
2.8 -	E			-2.8
3.2 -			5. C. B.	-3.2
3.6 -	Mary Contraction	5		- 3.6
4.0 -		3		5 5 -4.0
-1.2				
-0.8 -		T 0	та © на © (Э н ()	-0.8
	m			-0.4 _N
0.0	~~~~~			-0.4 _N
0.4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			-0.4 _N
	~~~~			-0.4 -0.4
	6 2.0 2.4 2.8 3.2 3 x (mm)		90 135 160	-0.4 _N 0.0 <u>m</u>
	6 2.0 2.4 2.8 3.2 3 x (mm)			-0.4 _N 0.0 <u>m</u> 0.4
	x (mm)	6 4.0 0 45	90 135 160	-0.4 _N 0.0 <u>m</u> 0.4
0.4 0.4 0.8 0.0 0.4 0.8 1.2 1. Stereometric Analys	x (mm) sis ONH	6 4.0 0 45	90 135 160	-0.3 -0.4 0.0 <u>3</u> -0.4 -0.4 -0.4 -0.4 -0.4 -0.4
0.4 0.4 0.8 0.0 0.4 0.8 1.2 1. Stereometric Analys	x (mm) sis ONH isk Area 4.657 mm	6 4.0 0 45	90 135 180 angle (*)	-0.3 -0.4 0.0 <u>3</u> -0.4 -0.4 -0.4 -0.4 -0.4 -0.4
0.4 0.4 0.8 0.0 0.4 0.8 1.2 1. Stereometric Analys	x (mm) sis ONH isk Area 4.657 mm up Area 0.003 mm	Normal Range	90 135 160 angle (')	-0.3 -0.4 0.0 <u>3</u> -0.4 -0.4 -0.4 -0.4 -0.4 -0.4
0.4 0.4 0.8 0.0 0.4 0.8 1.2 1. Stereometric Analysi C R	x (mm) sis ONH isk Area 4.657 mm	Normal Range n ² 1.69 - 2.82 n ² 0.26 - 1.27 n ³ 1.20 - 1.78	90 135 180 angle (*) Cap Predkted Low 95.05 Low 93.05	-0.4 -0.4 0.0 -0.4 -0.4 -0.4 -0.4 -0.4 -
0.4 0.4 0.8 0.0 0.4 0.8 1.2 1. Stereometric Analysis Cup	x (mm) sis ONH isk Area 4.657 mm up Area 0.003 mm tim Area 4.654 mm	Normal Range n ² 1.69 - 2.82 n ² 0.26 - 1.27 n ³ 1.20 - 1.78 m -0.01 - 0.49	90 135 180 angle (') cap Predicted Low 95.05 Low 99.05 Low 99.05 Low 99.05	-0.0 -0.4 0.0 -0.4 0.0 -0.4 -0.4 -0.4 -0
0.4 0.4 0.4 0.4 0.8 0.0 0.4 0.8 1.2 1. Stereometric Analysis Di C C R Cup Rim Cup/Disk Ar	x (mm) sis ONH isk Area 4.657 mm up Area 0.003 mm lim Area 4.654 mm Volume 0.000 cm Volume 2.336 cm ea Ratio 0.001	Normal Range n ² 1.69 - 2.82 n ² 0.26 - 1.27 m ³ 1.20 - 1.78 m -0.01 - 0.49 m 0.24 - 0.49 0.16 - 0.47	90 135 180 angle [*] Cop Predicted Low 95.055 Low 95.0555 Low 95.0555 Low 95.0555 Low 95.0555 Low 95.0555 Low 95.0555 Low 95.05555 Low 95.05555 Low 95.05555 Low 95.055555555555555555555555555555555555	-0.0 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4
0.4 0.4 0.4 0.8 0.0 0.4 0.8 1.2 1. Stereometric Analysis Di CC R Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk	x (mm) sis ONH isk Area 4.657 mm iup Area 0.003 mm ium Area 4.654 mm Volume 0.000 cm Volume 2.336 cm ea Ratio 0.001 sk Ratio 0.025	Normal Range nº 1.69 - 2.82 nº 0.26 - 1.27 mº 1.20 - 1.78 m -0.01 - 0.49 0.16 - 0.47 0.35 - 0.80	90 135 180 angle (*) cup Predicted Low 95.0% file Low 93.0% file L	-0.0 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4
0.4 0.4 0.4 0.8 0.0 0.4 0.8 1.2 1. Stereometric Analysis Di CC R Cup Disk Cup Disk Analysis Cup/Disk An Linear Cup/Disk Mean Cu	x (mm) sis ONH isk Area 4.657 mm iup Area 0.003 mm ium Area 4.654 mm Volume 0.000 cm Volume 2.336 cm ea Ratio 0.001 sk Ratio 0.025 up Depth 0.022 mm	Normal Range nº 1.69 - 2.82 nº 0.26 - 1.27 mº 1.20 - 1.78 m -0.01 - 0.49 0.16 - 0.47 0.35 - 0.80 n -0.14 - 0.38	90 135 180 angle [*] Low 95.0% Low 95.0% Low 95.0% Low 99.0% Job 100 Low 99.0% Low 99.9% global import Moorfields Classification: W (*) Altention: Moorfields regression class based on normal eyes with refractive em mm ² and 2.8 mm ² . Classification based	225 270 315 360
0.4 0.4 0.4 0.8 0.0 0.4 0.8 1.2 1. Stereometric Analysis Di CC R Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk	x (mm) sis ONH isk Area 4.657 mm iup Area 0.003 mm ium Area 4.654 mm Volume 0.000 cm Volume 2.336 cm ea Ratio 0.001 sk Ratio 0.025 up Depth 0.027 mm p Depth 0.087 mm	Normal Range nº 1.69 - 2.82 nº 0.26 - 1.27 mº 1.20 - 1.78 m -0.01 - 0.49 0.16 - 0.47 0.35 - 0.80 n -0.14 - 0.38	90 135 180 angle (*) cup Predicted Low 95.0% file Low 93.0% file L	225 270 315 360
0.4 0.4 0.4 0.4 0.8 0.0 0.4 0.8 1.2 1. Stereometric Analysis Di C C R Cup Disk An Linear Cup/Disk An Linear Cup/	x (mm) sis ONH isk Area 4.657 mm iup Area 0.003 mm ium Area 4.654 mm Volume 0.000 cm Volume 2.336 cm ea Ratio 0.001 sk Ratio 0.025 up Depth 0.027 mm Weasure -0.294	Normal Range   n² 1.69 - 2.82   n² 0.26 - 1.27   m² 1.20 - 1.78   m 0.01 - 0.49   0.16 - 0.47 0.35 - 0.80   n 0.14 - 0.38   n 0.46 - 0.90   -0.27 - 0.09 -0.27 - 0.09	90 135 180 angle [*] Low 95.0% Low 95.0% Low 95.0% Low 99.0% Job 100 Low 99.0% Low 99.9% global import Moorfields Classification: W (*) Altention: Moorfields regression class based on normal eyes with refractive em mm ² and 2.8 mm ² . Classification based	225 270 315 360
0.4 0.4 0.4 0.4 0.8 0.0 0.4 0.8 1.2 1. Stereometric Analysis Di CC R Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Cup Disk Disk Cup Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Disk Di	x (mm) sis ONH isk Area 4.657 mm iup Area 0.003 mm ium Area 4.654 mm Volume 0.000 cm Volume 2.336 cm ea Ratio 0.001 sk Ratio 0.025 up Depth 0.022 mm p Depth 0.087 mm Weasure -0.294 Contour 0.328 mm hickness 0.173 mm	Normal Range   n² 1.69 - 2.82   n² 0.26 - 1.27   m² 0.26 - 1.27   m² 0.26 - 1.27   m² 0.26 - 1.27   m² 0.26 - 0.49   0.16 - 0.47 0.35 - 0.80   n 0.14 - 0.38   n 0.46 - 0.90   -0.27 - 0.09 0.30 - 0.47   n 0.30 - 0.47	90 135 180 angle [*] Low 95.0% Low 95.0% Low 95.0% Low 99.0% Job 100 Low 99.0% Low 99.9% global import Moorfields Classification: W (*) Altention: Moorfields regression class based on normal eyes with refractive em mm ² and 2.8 mm ² . Classification based	225 270 315 360
0.4 0.4 0.4 0.4 0.4 0.0 0.4 0.0 0.4 0.8 0.0 0.4 0.8 1.2 1. Stereometric Analysis Di C C R Cup Disk An Linear Cup/Disk An Linear Cup/Disk An Linear Cup/Disk An Linear Cup/Disk An Linear Cup/Disk An Linear Cup/Disk An Height Variation Mean RNFL Th RNFL Cross Section	x (mm) sis ONH isk Area 4.657 mm iup Area 0.003 mm ium Area 4.654 mm Volume 0.000 cm Volume 2.336 cm ea Ratio 0.001 sk Ratio 0.025 up Depth 0.022 mm p Depth 0.027 mm Weasure -0.294 Contour 0.328 mm wickness 0.173 mm nal Area 1.324 mm	Normal Range   n² 1.69 - 2.82   n² 0.26 - 1.27   m² 0.26 - 1.27   m² 0.26 - 1.27   m² 0.26 - 0.49   0.16 - 0.47 0.35 - 0.80   n 0.14 - 0.38   n 0.46 - 0.90   -0.270.09 -0.30 - 0.47   n 0.30 - 0.47   n 0.18 - 0.31   n 0.95 - 1.61	90 135 180 angle [*] Low 95.0% Low 95.0% Low 95.0% Low 99.0% Job 100 Low 99.0% Low 99.9% global import Moorfields Classification: W (*) Altention: Moorfields regression class based on normal eyes with refractive em mm ² and 2.8 mm ² . Classification based	225 270 315 360
0.4 0.4 0.4 0.4 0.4 0.0 0.4 0.0 0.4 0.8 0.0 0.4 0.8 1.2 1. Stereometric Analysis Di C C R Cup Disk Cup Disk An Linear Cup/Disk An Linear Cup/Disk An Linear Cup/Disk An Linear Cup/Disk An Linear Cup/Disk An Height Variation Mean RNFL Th RNFL Cross Section Reference	x (mm) sis ONH isk Area 4.657 mm isk Area 0.003 mm im Area 4.654 mm Volume 0.000 cm Volume 2.336 cm ea Ratio 0.001 isk Ratio 0.025 up Depth 0.022 mm p Depth 0.027 mm Weasure -0.294 Contour 0.328 mm ickness 0.173 mm nal Area 1.324 mm e Height 0.061 mm	Normal Range   n² 1.69 - 2.82   n² 0.26 - 1.27   m² 0.26 - 1.27   m² 0.26 - 1.27   m² 0.26 - 0.49   0.16 - 0.47 0.35 - 0.80   n 0.14 - 0.38   n 0.46 - 0.90   -0.270.09 -0.30 - 0.47   n 0.30 - 0.47   n 0.18 - 0.31   n 0.95 - 1.61	90 135 180 angle [*] Low 95.0% Low 95.0% Low 95.0% Low 99.0% Job 100 Low 99.0% Low 99.9% global import Moorfields Classification: W (*) Altention: Moorfields regression class based on normal eyes with refractive em mm ² and 2.8 mm ² . Classification based	225 270 315 360
0.4 0.4 0.4 0.4 0.4 0.0 0.4 0.0 0.4 0.8 0.0 0.4 0.8 1.2 1. Stereometric Analysis Di C C R Cup Disk An Linear Cup/Disk An Linear Cup/Disk An Linear Cup/Disk An Linear Cup/Disk An Linear Cup/Disk An Linear Cup/Disk An Height Variation Mean RNFL Th RNFL Cross Section	x (mm) sis ONH isk Area 4.657 mm isk Area 0.003 mm im Area 4.654 mm Volume 0.000 cm Volume 2.336 cm ea Ratio 0.001 isk Ratio 0.025 up Depth 0.022 mm p Depth 0.027 mm Weasure -0.294 Contour 0.328 mm ickness 0.173 mm nal Area 1.324 mm e Height 0.061 mm	Normal Range   n² 1.69 - 2.82   n² 0.26 - 1.27   m² 0.26 - 1.27   m² 0.26 - 1.27   m² 0.26 - 0.49   0.16 - 0.47 0.35 - 0.80   n 0.14 - 0.38   n 0.46 - 0.90   -0.270.09 -0.30 - 0.47   n 0.30 - 0.47   n 0.18 - 0.31   n 0.95 - 1.61	90 135 180 angle [*] Low 95.0% Low 95.0% Low 95.0% Low 99.0% Job 100 Low 99.0% Low 99.9% global import Moorfields Classification: W (*) Altention: Moorfields regression class based on normal eyes with refractive em mm ² and 2.8 mm ² . Classification based	225 270 315 360

Software: IR1-V1.7/3554

Figure 12A&B. HRT of another woman with optic nerve head drusen. Her visual fields have remained normal for two years. Note OD has thinning of the NFL.

А



*Figure 12A&B.* Continued.



*Figure 13A–D.* Three dimensional HRT views of the woman in fig. 6A. Note the dramatic heights of the nerves in addition to the indistinct margins.



*Figure 14A&B.* HRT three dimensional views of the right eye of a 7-year-old girl. These buried drusen are remarkable in size. Her vision, MRI and visual fields are normal.

239



subretinal neovascular membranes should be considered only if central acuity is threatened. As noted before, most peripapillary membranes regress spontaneously with good visual potential.⁷⁴

#### References

- 1. Lorentzen SE. Drusen of the optic disc. *Dan Med Bull* 1967;14:293–298.
- Müller H. Anatomische beiträge zur ophthalmologie. Graefes Arch Clin Exp Ophthalmol. 1858;4:1–40.
- 3. Tso MO. Pathology and pathogenesis of drusen of the optic nerve head. *Ophthalmology*. 1981;88:1066–1080.
- Liebrich R. Contribution to discussion on Iwanoff A Ueber Neuritis Optica. *Klin Monatsbl Augenheilkd*. 1868;6: 426–427.
- Lauber H. Klinische und anatomische untersuchungen ueber drusen im sehnervekoph. Graefes Arch Clin Exp Ophthalmol. 1921;105:567–589.
- Reese A. Relation of drusen of the optic nerve to tuberous sclerosis. Arch Ophthalmol. 1940;2:197–205.
- Rucker CW, Lansche RK. Defects in visual fields produced by hyaline bodies in optic discs. *Arch Ophthalmol.* 1944;32:56–59.
- Rosenberg MA, Savino PJ, Glaser JS. A clinical analysis of pseudopapilledema: I: population, laterality, acuity, refractive error, ophthalmoscopic characteristics, and coincident disease. *Arch of Ophthalmol.* 1979;97:65–70.
- Forsius H, Erikson A. Ophthalmological studies of a population group in the Aland Islands. *Acta Ophthalmol (Kbh)*. 1961;39:318–321.
- Francios J. L'heredite en ophtalmologie. Paris, France: Masson; 1958:509–602.
- Lorentzen SE. Drusen of the optic disc, an irregular dominant hereditary affectation. *Arch Ophthalmol.* 1961;39: 626–643.
- Antcliff RJ, Spalton DJ. Are optic disc drusen inherited? Ophthalmology. 1999;106:1278–1281.
- Mustonen E. Pseudopapilloedema with and without verified optic disc drusen. A clinical analysis I. Acta Ophthalmol (Copenh). 1983;61:1037–1056.
- Mullie MA, Sanders MD. Scleral canal size and optic nerve head drusen. *Am J Ophthalmol.* 1985;99:356–359.
- 15. Lorentzen SE. Incidence of ciloretinal arteries. Acta Ophthalmol (Copenh). 1970;48:518–524.
- Sarkies NJ, Sanders MD. Optic disc drusen and episodic visual loss. *Br J Ophthalmol.* 1987;71:537–539.
- Savino PJ, Glaser JS, Rosenberg MA. A clinical analysis of Pseudopapilledema. II: visual field defects. *Arch Ophthalmol*.1979;97:71–75.
- Beck RW, Corbett JJ, Thompson HS. Decreased visual acuity from optic disc drusen. *Arch Ophthalmol.* 1985; 103:1155–1159.
- Moody TA, Irvine AR, Cahn PH. Sudden visual field constriction associated with optic disc drusen. *J Clin Neuro*ophthalmol. 1993;13:8–13.

- Hoyt WF, Beeston D. Elevated disc anomalies often confused with papilledema. *The Ocular Fundus in Neurologic Disease*, St. Louis, MO: C.V. Mosby; 1966:24–31.
- Hoover DL, Robb RM, Petersen RA. Optic disc drusen in children. J Pediatr Ophthalmol Strabismus. 1988;25:191– 195.
- 22. Miller NR. Appearance of optic disc drusen in a patient with anomalous elevation of the optic disc. *Arch Ophthalmol.* 1986;104:794–795.
- Bolt HC, Byrne SF, DiBarnardo C. Echographic evaluation of optic disc drusen. J Clin Neuro-ophthalmol. 1991;11: 85–91.
- Erkkilä H. Optic disc drusen in children. *Acta Ophthalmol.* Suppl 1977;129:3–44.
- 25. Erkkilä H. The central vascular pattern of the eyeground in children with drusen of the optic disk. *Graefes Arch Clin Exp Ophthalmol.* 1976;199:1–10.
- Auw-Haedrich C, Staubach F, Witschel H. Optic Disc Drusen. Surv Ophthalmol. 2002;47(6):515–532.
- Erkkilä H. Clinical appearance of optic disc drusen in childhood. *Graefes Arch Clin Exp Ophthalmol.* 1975;193: 1–18.
- Mustonen E. Pseudopapilloedema with and without verified optic disc drusen. A clinical analysis II. *Acta Ophthalmol (Copenh)*. 1983;61:1057–1066.
- Barry WE, Tredici TJ. Drusen of the optic disc with visual field defect and Marcus Gunn pupillary phenomenon. (Aeromedical Consultation Service case report ). *Aero-space Med.* 1972;43:23–206.
- Pietruschka G, Priess G. Clinical importance and prognosis of drusen of the disc. *Klin Monatsbl Augenheilkd*. 1973;162:331–341.
- 31. Francois P. Les verrucosites hyalines de la papile. *Annales d'Oculistique*. 1949;182:249–278.
- Chambers JW, Walsh FB. Hyaline bodies in the optic discs: report of ten cases exemplifying the importance in neurologic diagnosis. *Brain*. 1951;74:95–108.
- 33. Petersen HP. Colloid bodies with defects in the field of vision. *Acta Ophthalmol (Copenh)*. 1957;35:243–272.
- 34. Sietz R. Die intraokulen drusen. Klin Monatsbl Augenheilkd. 1968;152:203–211.
- 35. Spencer WH, Drusen of the optic disk and abberent axoplasmic transport: The XXXIV Edward Jackson Memorial Lecture. *Am J Ophthalmol.* 1978;85:1–12.
- Sacks JG, O'Grady RB, Choromokos E, Leestma J. The pathogenesis of optic nerve drusen. A hypothesis. *Arch Ophthalmol.* 1977;95:425–428.
- Cohen DN. Drusen of the optic disc and the development of field defects. *Arch Ophthalmol.* 1971;85:224–226.
- Chang A, Flaherty M. Disc drusen: a headache for child and clinician. Aust NZ J Ophthalmol. 1996;24:381–384.
- Kurz-Levin MM, Landau K. A comparison of imaging techniques for diagnosing drusen of the optic nerve head. *Arch Ophthalmol.* 1999;117:1045–1049.
- 40. McNichols MM, Power WJ, Griffen JF. Sonography in optic disk drusen: imaging findings and role in diagnosis when funduscopic findings are normal. *Comment on: Am J*

RIGHTSLINKA)

240

Roentgenol. 1995;164(3) 1994;769–770 Am J Roentgenol. 162:161–163.

- 41. Newman NM. Visible drusen in optic discs. *Arch Ophthalmol.* 1986;104:1587–1588.
- Rochels R, NeuhannT. B-scan sonography in drusen of the optic disc. *Ophthalmologica*. 1979;179:330–335.
- Freedman AH, Beckerman B. Gold DH. Drusen of the optic disc. Surv Ophthalmol. 1977;21:375–390.
- Scholl GB, Song HS, Winkler DE, S.H. Wray The pattern visual evoked potential and pattern electroretinogram in drusen-associated optic neuropathy. *Arch Ophthalmol.* 1992;110:75–81.
- 45. Stevens RA, Newman NM. Abnormal visual-evoked potentials from eyes with optic nerve head drusen. *Am J Ophthalmol.* 1981;92:857–862.
- 46. Vieregge P, Rosengart A, Mehdorn E, Wessel K, Kompf D. Drusen papilla with vision disorder and pathologic visual evoked potentials. *Nervenarzt*. 1990;61:364–368.
- Mustonen E, Nieminen H. Optic disc drusen a photographic study. II. Retina nerve fiber layer photography. *Acta Ophthalmol.* 1982;60:859–872.
- 48. de Schweinitz GE. Hyaline bodies (Drusen) in the nerve head. *Trans Amer Ophthalmol Soc.* 1892;6:349.
- 49. Friedman AH, Gartner S, Modi SS. Drusen of the optic disc. A retrospective study in cadaver eyes. *Br. J. Ophthalmol.* 1975;59:413–421.
- Schuman JS, Pedut-Kloizman, Hertzmark E, Hee MR, Wilkins JR, Coker JG, Puliafito CA, Fujimoto JG, Swanson EA. Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. *Comment* on: Ophthalmology.1997;104:10:1996;1530–1531 Ophthalmology. 103:1889–1898.
- Roh S, Noecker RJ, Schuman JS, Hedges TR. 3rd Effect of optic nerve head drusen on nerve fiber layer thickness. *Ophthalmology*. 1998;105:878–885.
- 52. Kuchenbecker J, Wecke T, Vorwerk CT, Behrens-Baumann W. Quantitative and objective topometrical analysis of drusen of the optic nerve head with the Heidelberg retina tomography (German) *Ophthalmologe*. 2002;99:10:768–773.
- Piccone MR, Piltz-Seymour, Shin D. Coexisting optic nerve head drusen and glaucoma. *Comment on; Ophthalmology.* 1997;104:7:1998;1138–1144 *Ophthalmology.* 105:761–762.
- Roh S, Noecker RJ, Schuman JS. Evaluation of coexisting optic nerve head drusen and glaucoma with optical coherence tomography. *Comment on Ophthalmology*. 1988;105:5:761–762, *Ophthalmology*. 104:1138–1344.
- 55. Kraznitz I, Beiran I *et al.* Coexistence of optic nerve head drusen and Pseudotumor cerebri: a clinical dilemma., *Euro J Ophthalmol.* 1997;7:4:383–386.
- 56. Eggers HM, Sanders MD, Acquired optociliary shunt vessels in papilledema. *Br J Ophthalmol* 1980;64:267–271.
- Lorentzen SE. Drusen of the optic disc. *Acta Ophthalmol.* Suppl 1966;90:1–180.
- Gittinger, Jr JW, Lessell S, Bondar RL. Ischemic optic neuropathy associated with optic disc drusen. J Clin Neuroophthalmol. 1984;4:79–84.

- Jonas JB, Gusek GC, Naumann GO. Anterior ischemic optic neuropathy: nonarteritic form in small and giant cell arteritis in normal sized optic discs. Int Ophthalmol. 1988;12:119–125.
- Cousin P, Fourmaux MB, Renaud-Rougiere MB, Merci M, Pincemin D, Le Rebeller M.J. Bilateral anterior acute ischemic optic neuropathy complicating optic nerve head drusen. Apropos of a case. *J Fr Ophthalmol.* 1999;22:79–83.
- Karel I, Otradovec J, Peleska M. Fluorescence angiography in circulatory disturbances in drusen of the optic disk. *Ophthalmologica*. 1972;164:449–462.
- Newman WD, Dorrell ED. Anterior ischemic optic neuropathy associated with disc drusen. *J Neuro-ophthalmol*. 1996;16:7–8.
- Frohlich SJ, Ulbig MW, Klauss V. Sudden loss of vision without previous symptoms. 58 year-old patient with sudden and painless loss of vision of the right eye. *Ophthalmologe*. 1999;96:120–121.
- Brown GC, Magargal LE, Shields JA, Goldberg RE, Walsh PN. Retinal artery obstruction in children and young adults. *Ophthalmology*. 1981;88:18–25.
- 65. Newman NJ, Lessell S, Brandt EM. Bilateral central retinal artery occlusions, disk drusen, and migraine. *Am J Oph-thalmol.* 1989;107:236–240.
- 66. Farah SG, Mansour AM. Central retinal artery occlusion and optic disc drusen. *Eye*. 1998;12:480–482.
- Uehara M, Inomata H *et al.* Optic disc drusen with central retinal artery occlusion. *Jpn J Ophthalmol.* 1982;26: 10–17.
- Newsome RS, Trew DR, Leonard TJ. Bilateral buried optic nerve drusen presenting as central retinal artery occlusion at high altitude. *Eye.* 1995;9:806–808.
- Ring CP, Pearson TC, Sanders MD, Wetherley-Mein G. Viscosity and retinal vein thrombosis. *Br J Ophthalmol.* 1976;60:397–410.
- Seitz R, Kersting G. Die Drusen der Sehnervenpapille und des Pigmentepithels. *Klin Monatsbl Augenheilkd*. 1962;140:75–88.
- Gallagher MJ, Clearkin LG. Drug of drusen? Central retinal vein occlusion in a young healthy woman with disc drusen. *Eye.* 2000;14:401–402.
- Anderson CJ, Zauel DW *et al.* Bilateral juxtapapillary subretinal neovascularization and pseudopapilledema in a three year old child. *J Pediatr Ophthalmol Strabismus*. 1978;15:296–299.
- Brown SM, Del Monte MA. Choroidal neovascular membrane associated with optic nerve head drusen in a child. *Am J Ophthalmol.* 1996;121:215–217.
- Harris MJ, Fine SL, Owens SL. Hemorrhagic complications of optic nerve drusen. Am J Ophthalmol. 1981;92:70–76.
- Wise GN, Henkind P, Alterman GM. Optic disc drusen and subretinal hemorrhage. *Trans Am Acad Ophthalmol Otolaryngol.* 1974;78:212–219.
- Sanders TE, Gay AJ, Newman M. Hemorrhagic complications of drusen of the optic disk. *Am J Ophthalmol.* 1971;71:204–217.

Semin Ophthalmol Downloaded from informahealthcare.com by University Of Pittsburgh on 04/19/10 For personal use only.

- Hitchings RA, Corbett JJ, Winkleman J, Schatz NJ. Hemorrhages with optic nerve drusen. *Arch Neurol*. 1976;33:675–677.
- Miosseiev J, Cahane M, Treister G. Optic nerve head drusen and peripapillary central serous chorioretinopathy. *Am J Ophthalmol.* 1989;108:202–203.
- 79. Green WR, Chan CC, Hutchins GM, Terry JM. Central retinal vein occlusion: a prospective histopathologic study of 29 eyes in 28 cases. *Retina*. 1981;1:27–55.
- Bouchet GC, Chabot J. Fluorographic diagnosis of papillary pseudo-edema related to the presence of hyaline verrucosity of the papilla. *Bull Soc Opht France*. 1970;70: 1121–1131.
- Shiono T, Noro M, Tamai M. Presumed drusen of optic nerve head in siblings with Usher syndrome. *Jpn J Ophthalmol.* 1991;35:300–305.
- Engelman MW, Fliegelman MT, Pseudoxanthoma elasticum. *Cutis.* 1978;21:837–840.
- Mansour AM. Systemic associations of angioid streaks. Int Ophthalmol Clin. 1991;31:61–68.
- Goodman RM, Smith EW *et al.* Pseudoxanthoma elasticum. A clinical and histopathological study. *Medicine*.1963;42:297.

- Mansour AM. Is there an association between optic disc drusen and angioid streaks? *Graefes Arch Clin Exp Ophthalmol.* 1992;230:595–596.
- Pierro L, Brancato R, Minicucci M, Pece A. Echographic diagnosis of drusen of the optic nerve head in patients with angioid streaks. *Ophthalmologica*. 1994;208:239–242.
- Coleman K, Ross MH, McCabe M, Coleman R, Mooney D. Disk drusen and angioid streaks in pseudoxanthoma elasticum. *Am J Ophthalmol.* 1991;112:166–170.
- Brodsky M, Baker R, Hamed L. *Pediatric Neuro-Ophthalmology*. New York: Springer-Verlag; 1996:106–113.
- Arnold AC. Optic disc drusen. *Ophthalmol Clin North Am.* 1991;4:505–517.
- Samples JR, van Buskirk M, Shults WT, Van Dijk HJ. Optic nerve head drusen and glaucoma. *Arch Ophthalmol.* 1985;103:1678–1680.
- Jirásková N, Rozival P. Decompression of the optic nerve sheath – results in the first 37 operated eyes. *Cesk Slov Oftalmol.* 1996;52:297–307.
- Jirásková N, Rozival P. Results of 62 optic nerve sheath decompressions. *Ceska Slov Oftalmol.* 1999;55: 136–144.