VERGENCE AND LENSES

Vergence

Any object — a colorful vase, a black-and-white photograph, a
stick, or a letter E on a Snetlen chart — can be considered to be made
up of an infinite number of points, each of which contributes some-
thing to the overall make-up of that object. To enable us to form an
image of that object, we must have some light coming forth from it.
The amount doesn’t have to be very great; in fact it can be very little,
but there has to be some. That light energy can be emitted by it, re-
flected from it, transmitted through it—— but somehow light energy
{which may even be invisible to the eye} must be given off. The object
is then considered “‘luminous.” From it, a myriad of light rays are
thrown off; each is infinitely thin and each projects to a specific
direction.

Before we can deal with these rays intelligently, we all must agree
on certain of their characteristics. These have to do with light conven-
tions and are simply our rules for dealing with these “animals.’”” One
convention is that the light must travel from left to right. Of course. light
travels in all directions. but for our analyses here, please just accept
this first convention about the light ray.

Light rays will always diverge {spread apart) from every point
comprising a real object, so let's focus our attention on the rays
emitted by one point — any point X — on that object.
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From point X in the above figure five rays out of the many possible
ones are drawn and travel to the right. These rays will arrive at a
reference plane, say, 50 cm away. When they strike this plane, they
are diverging at a certain rate. We define (not explain) that, at the
reference plane, the vergence of those rays from point X is inversely
proportional to the distance (in meters} between X and the plane. That

is, at reference plane R, the rays from point X have a vergence of
1

.5 meters
at any reference plane are considered negative (—] so the actual

vergence here is written as — 2 Diopters.

All rays from all real points diverge. When you run across rays
which are converging, please realize that they must have been created
by some other optical system; they cannot occur naturally. These are
defined as positive {+) by convention. We will adhere to this sign
convention throughout this book. But, please do not consult other
texts to confirm this. You may find that they do not agree and you will
be confused. Just learn it this way. Again, minus means diverging rays
and plus converging, whether talking about lenses, mirrors, eyes, or
any optical system at all. Simple enough.

= 2 Diopters. Again by our convention, all rays diverging
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If we move our reference plane closer 1o point X so that it is
only 40 cm away, the vergence at that plane is now — 2.5 Diopters.

L ; at 10 cm, it is — 10 D, and at 2 meters, it is — 0.5 D.
.40 meters

Do not forget that minus sign.
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If we remove the actual plane entirely, we can still taik about the
vergence of the rays at a given distance from X this vergence will
be the same whether or not there is a real plane there to intercept the
rays.

The Plus Lens

Let us now put a fens — any lens — somewhere to the right of our
{uminous point X — say, at 66 ¢m. The vergence of the light from X
as measured at the lens plane is — 1.5 D {the same as its vergence at
that position if the lens were not there). The lens has certain proper-
ties which bestow upon it the ability to change the vergence of those
light rays falling on it. Its ability to change vergence is also expressed
in diopters. A lens is considered plus {+) if it adds vergence to the
incoming light, and minus (—) if it subtracts vergence (or makes the
light more divergent.)

If we place a + 3 Diopter lens 50 cm to the right of point X, the
lens will add + 3 D of vergence to the incoming rays which already
have a vergence of — 2 D at that lens plane. The light rays will leave
the lens with a vergence (again, as measured at the flens plane) of
4 1 Diopter. See the diagram below:

)
~2 i+l

To keep us aware of the fact that our vergence measurements take
place at the lens plane, we write a — 2 on our diagram just to the left
of the lens, as the incoming rays hit it. This is the vergence of object
point X and will be labeled ¢ (in diopters). The 4 3 Diopters of lens
power P combines with {is added to} this object vergence, and the
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resulting image-point vergence, V, of + 1 Diopter is written just to the
right of the lens (again to remind us that the fens is the reference
plane). What we have just said can be written In math shorthand:
Ut+pPp=yVv
The object vergence combined with the vergence-change provided
by a lens yields the image vergence. This is one of the very few key
“formulas’’ you must know; we will continue to rely on it heavily.
Again by convention, vergences will be expressed in capital
letters: U for the object, V for the image, and small letters v and v
corresponding, respectively, to object and Image distances:
1

—= Y,

u
1

—_ =y

v
The previous object-image example is our first encounter (here, in

the image), with converging or + rays. We see that it took an optical
system to create them. The image vergence of " 1 D" says that the

rays which leave the lens P are converging (the -+ sign) and do so

towards an image point located 1 meters to the right of lens P. Since

v
we know the image vergence in diopters is - 1 D, the actual distance

to the image point is 1 _— + 1 meter. Thus. the peint X’ {the image

+ 1
point which corresponds optically to the real object point X} is located

1 meter to the right of lens P. The image point is a real ona, that is. it
can be focused on a screen.

X and X' are called conjugate points — they are related by their
being the object and image of one another. Since light rays are com-
pletely retraceable, if the real object point were located instead exactly
at X', its image by lens P would always be precisely at X. However,
we have agreed (by our convention} to stay away from light rays
which move from right to left, but please realize they can do so. (A
mirror would reverse the direction of these rays, but this wiil be ex-
plored later].

Another definition is now in order. The lens axis: this line coin-
cides with and represents a ray of light which falls perpendicular to
the lens surface and whose direction of travel is not disturbed by the
lens; the axial ray goes through undeviated.
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The spot on the lens that this ray strikes is the axial point —a very
critical one for all our optical constructions. Actually any ray from
any direction that passes through the axial point will also proceed
undeviated; we also call this point the NODAL POINT. In our “'thin”
iens system here, the axial point and nodal point coincide exactly.
When we study more complex optical systems, we will investigate
such a point further.

Recall, we chose X to represent a singfe point in a much larger
object composed of many such points; in the optical example given,
we could have chosen any X that was equally distant from our lens P.
It shoutd, therefore, be clear that all such object points must lie in a
plane which is perpendicular to the lens axis and paralle! to lens P.
These points constitute an object plane. (Other points on the same
object but not in that same plane would necessarily yield rays of dif-
ferent vergence at the lens.}

Just as X establishes an object plane, X' (the image point of X}
fixes an image plane which is also parallel to lens P. All points in the
same object plane as X will be imaged somewhere in the same image
plane as X'. The exact, corresponding positions of these points will
be determined later.

Referring back to our same -+ 3 D lens P, let's move object X
closer toward it. When X moves from 50 cm to 40 cm from the lens,
its vergence at the lens increases from — 2 to — 2.5 Diopters.

U+ P =V becomes — 2.5 + 3.0 = + 0.5
The image rays are still converging, but the distance from the lens to

the new image point X' has now increased; X' has moved further to
1

5D
As X moves even closer — to 33 cm from the lens — something
peculiar happens:

the right, to a position or 2 meters away.



-343 0

A

U+P=V
—34+3=0 v

The image point vergence becomes 2erg; its distance from lens P
is v.
1

vV =7

v
Since it is a mathematical commandment that “*Thou shalt not divide

by zero'* and here V = 0O, now what? We cannot say that there is no
image point to correspond to object point X ; but what we ¢an say is
that as the image vergence V approaches zero, v approaches an infi-
nite distance to the right. Thus, image point X’ is located a long
distance away — at "'right infinity.”

Here we have found a special position of object point X relative
to lens P — the location of an abject point, the image of which is at
infinity. That position along the lens axis is called the PRIMARY
FOCAL POINT (F) of the lens. Light rays which originate there and
strike the lens will leave the lens in parallel bundles.

That plane which contains F {parallel to the lens plane) is the
primary focal plane. Any point Y in this plane emits rays which, of
course, diverge — those rays that fall upon lens P will enter the
“image space’’ (following the lens' action) as parallel to each other;
but, parallel to what direction? Certainly not to the lens axis, since
only rays arising specifically at axial point F itself would do that. No;
that direction taken by these parallel rays in the image will be indi-
cated by only one of the rays leaving object point ¥ — that particular
one that leaves Y aimed directly at the axial {nodal) point of lens P
{see the diagram below): that ray then {by our definition of the noda!
point} will continue on undeviated and will establish the direction of
all the parallel rays in the image space” which arise at point Y in the
primary focal plane.
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We should now see that the FOCAL LENGTH f of the lens {that is,
the axial distance between F and the lens) is nothing more than that

specific object distance v which yieids an image vergence of zero for
1

this particular lens P. So fin meters must equal lens power (in Diopters]’

Our next simple “formula’™ then is

1
..Hﬂ.

1
A 4 14 D lens will have a focal tength of

+._A.oq + 71 cm.

i we place a 35 mm slide transparency in the position of the
primary focal plane of a projector lens and make the slide very lumi-
nous by shining a strong projector light bulb onto it, the lens would
project the image of that slide onto a screen. The image would be
sharp and clear if the screen were at right infinity. Since that makes
for a rather long projection room, the slide can be placed slightly shy
of F, that is, a littte further from the lens (thus reducing somewhat
the vergence of the light rays emanating from each point on the slide);
then the projected image wouid be found at some finite distance in

front of the lens — a little more practical than infinity for most
projection!

So far, we have been seeing how the image point moves as we
brought an axial object point X clioser to the lens. Let's backtrack for
one moment. When point X on the axis is a long way to the feft of the
lens (at left infinity), the light rays emitted from it are, naturally, di-
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vergent. But since the lens is so far away, by the time the rays reach
it, they are diverging so minimally that we must consider them arriv-
ing in a parallel bundle, that is with an object vergence U of zero.

When we look at the lens in the diagram below, we see a number
of parallel light rays drawn, but remember, all of these came from one
point, X, located at infinity on the left and on the lens axis.

O+3+3

i\

The image of axial object point X will be at F' — the SECONDARY
FOCAL POINT (and another key position). F’ is the image correspond-
ing (conjugate) to an axial object point situated at infinity.

- » L]

As an interjection, there is one particular type of erroneous dia-
gram that is often sketched by beginners, but unhappily, it is also
occasionally found in elementary physics or physiclogy texts when
simple optics is being “explained’’ — | quiver each time | see it, or a
reasonable facsimile thereof, and now you should too!

The diagram below is correct;

A

10

the two rays drawn, of course, signify light emanating from one point
{the axial one} of a very distant object as they are brought to a point
focus at F'.

Now lock at this one:

OBJECT M

MAGE 15 NOT
/  LOCATED HERE!

P

This diagram, with one ray from each end of an arrow-shaped
object, | believe, actuaily attempts to show the same thing (that is, a
final image at the focal point F’}, but this one is horribly incorrect. The
true image of the arrow object must be further to the right than F’.
Diagrams like this and its ilk have done much to disturb students by
shattering their confidence in being able to understand something
simple. Don't you make this same mistake. ‘Nuf said.

- - -

“Off-axis’’ Objects and Images

When object peint X is at infinity but above the lens axis, rays
arising there also arrive at the lens in parallel bundies, but strike the
lens at some angle {inclination} to the axis. How steep an angle? You
guessed it. That angle of inclination & of all these parallel rays would
be given by the one ray from point X which was directed at the nodal
point of the lens. The image., of course, would be located in the
secondary focal plane, since that plane is the home of alf image
points representing object points at infinity. The exact position of the
image point in that pfane is pinpointed by our undeviated ray through
the lens nodal point. {See next figure.}

11



-~ SECONDARY
FOCAL PLANE

LENS
AXIS

i a sheet of camera film were located at this secondary focal
plane and lens P were a simple camera lens, a sharp image of every
object point focated at optical infinity would be created on the film
and captured for posterity, (if the film were properly exposed).

Let us now continue where we left off and move object point X
closer to the lens P. Point X will then be closer to the lens than the
primary focal point F. Say, X is at a distance of 26 cm from the lens:
then,

Uu+pP=YV
—44+3=—1

The image point vergence at lens P is — 1 D.

Here is our first encounter with a negative vergence for an image
peint; how is this to be interpreted?

By convention, we originally agreed that minus meant divergent
object or image rays. So, here too, we must observe this convention,
and the minus sign must mean divergent rays are present in the
“image space”, that is, after leaving the lens. Since these rays are
diverging, they cannot be brought into focus on a screen; only con-
verging image rays can form a real image as mentioned before. We
say that (by definition) if diverging rays are present in the “image
space”, the image is virtual — it cannot be focused on a screen.
Even s0, there still is an image point X' which is conjugate {corre-
sponds) to object point X; but, the image is located on the feft of
the lens! How far? Well,

12

U+tP=V
—443=—1
1 1

V=V 1D

Thus, the image point X' would be 100 cm to the feft of the lens.

= — 1 meter

—4 43 =1

[-25 CM
100 o;|H_u_ooz_

That is, although the actual rays (shown in sofid lines} are divergent
as they leave lens P, they simulate rays {dotted lines) which would
have come from a real point located 100 cm away. All real, honest-
to-goodness light rays will, in the diagrams of this book. be indicated
as solid lines, while rays from apparent (virtual) points will be shown
as dotted lines}.

For all intents and purposes then, after leaving the lens, the rays
will seem to arise from X'. Thus an eye looking through lens P would
not “see’”’ point X (which is really 25 cm from the lens); it would
“'see’” the image point X' (as created by the lens) as if it were located
100 cm away from it.

If you wish to know the vergence at the eye of those light rays that
seem to come from X', you will have to determine the distance be-
tween X' and the eye. Say, the eye is located 10 cm from lens P.

Then X' must be located 110 cm from the eye, and X' has a vergence
1 . :
of Tiameters O 91 D at the eye. Notice now that not only is
X' an tmage created by lens P; it is also, simultaneously, an object for
the eye and, thus, can be said to lie in the "“object space’” of the aye.

(Even though | have already tossed out the terms ‘‘object” and
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image” space glibly, | would still like to withhold their definitions
until a bit later.)

Consider one last example for this + 3 D lens:

X continues to move closer to P — to a position only 5 em from it. X
1

presents a vergence U to the lens of — o5m o 20 D.
U+P=YV
— 204 3 =—17
The image X' is now located at “q = or — 5.9 cm, to the left

of the lens. Furthermore, the closer X is to the lens, the smaller the
apparent sepatation between X and X'.

Object Movement Vs. Image Movement — Plus

With the help of a tabie to recapitulate the examples given so far,
let us study what happens to the image movement as the object point
moves from left-hand infinity towards a + 3 D lens.

Object _ _ _ _ B
distance v| = 50 40 o w,.m 25 5
in cm

Image g _ _
distance v | .33 | + 100 | + 200 =] 100 5.9
in cm {at F’})

A . A
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As the object located at left infinity moves to the right {towards
the lens), the image point first seen at F’ also moves towards the
right, more and more rapidly until the image reaches right infinity
precisely when the object arrives at F. With any further approach of
the object towards the lens, the image suddenly appears at /eft in-
finity — (consider that the image initially moved away from the lens
to right infinity and then “around the earih” and suddenly appeared
from the teft.}

LEFT
INFINITY

RIGHT
INFINITY

The image then proceeds to approach the lens from the left, tagging
behind the object as the latter moves still closer to the lens. The
image finally catches up with the object at the lens plane. Thus with
the plus lens, as the object moves to the right, the image moves to
the right also.

So far we have examined the properties of a + 3 lens. We can
generalize that any plus lens will have identical properties, aside
from variation in its power. Each lens will exert its own particular
influence on the incoming object vergence. A + 12 Diopter aphakic
spectacle lens would add + 12 Diopters of convergence to any
object rays arriving at it. A -+ 0.001 Diopter astronomical telescope
objective would add this tiny amount of convergence to incoming
object rays.

The Minus Lens

A minus lens has the ability to add divergence to incoming rays.
Our same little relationship U + P = V and all our related sign con-
ventions continue to hold true.

If a real object point X is located 25 cm to the left of lens P of
1

- 3 Diopters, the object vergence at the lens would cmg
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or — 4 D. The — 3 D lens adds its vergence power of — 3 D to the
incoming — 4 D vergence to yield — 7 D of image vergence.
U+P=YV
— 4+ (—3)=—7

This locates an image point at — ql._;Q or — 14.1 cm, the minus sign

again meaning “to the left of lens P,
If the object (in the next figure) were at left infinity, the object
vergence {/ would be zero.

W
F' \\\\\\\\\ ]
S
//I/ /
il
U+P=V

Therefore, 0 + {(—3) =-—-3
Thus, the Image vergence is — 3 Diopters, and the image point would
be found at — 33 cm (33 cm to left of lens P}, We have already de-
fined that the image point conjugate to an axial object point located
at infinity is called the secondary focal point (F’) of a lens so this
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minus lens’ F’ is 33 cm on the feft.

With any minus lens, F' wili always be on the left; but remember
also that F' is still an image. just as much as is F' of a plus lens. The
object point at infinity, though it appears to be on the same side of the
lens as F'. it is not in the same “space”. The image point F’ exists
only in the “image” space, the term signifying that we are dealing
with light which has already been influenced by a given lens.

Now, how on earth can we locate the primary focal point (F} of a
minus lens, since by definition it is the object, the image of which is
located at right infinity (that is, the image vergence must be zero}?
Our trusty relationship U/ + P = V should help us:

U—3=20

U must = + 3, which means that this object
point F (the primary focal point of the lens) must be 33 cm to the
right of the lens. Our light rays (remember this convention?) musi
travel from left to right; so, for us to obtain an image vergence of
zero, the object vergence has to be plus {convergent} in the object
space. Only then can parallel rays be created by the minus lens.
{As stated early in this treatise, convergent object rays can only be
formed by another optical device; they cannot occur naturally.)

To demonstrate F of a minus lens diagrammatically, we must show
object rays converging toward F (the “object’”” point) before they
impinge on the lens. The fact that the object rays never really reach F
but are only directed towards it should not distress you.

+3-3 0

W

JiiN

When convergent rays fa!l on any lens — plus or minus — the
object vergence will of course be plus, and the object is considered
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“virtual” since it is intangible. Optically, however, a virtual object can
be manipulated as readily as a real one, just as can a virtual image.
Virtual object rays will be shown in the accompanying diagrams as
dotted instead of solid lines.

Let us now move the virtual “‘object’’ closer to the lens, to some-
where between the lens and F. We will thus have to make the object
rays even more convergent than + 3 D. Say the vergence of object
point X is + 4 Diopters {see figure below};

Ut+P=V
+ 44+ (—3) =+ 1D and a real image point will be
created by a minus lens. If you desire, you can focus this image onto
a screen one meter away — to the right.

+4-3 +1

Object Movement Vs. Image Movement — Minus

Again, a table has been constructed relating the object distance
v and image distance v for a minus lens. | have added a few more
examples for our — 3 Diopter lens:

Object -3 — —-10
distance + 25 ﬂ.umww UL o 8 25
incm
tmage +100| == | —50| —331-16.71—14.1| —6.9
distance v (at F')
in cm
Wm s L» r r
R i x £
K ¥ Fy
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As an object point moves from the right side of the lens towards
right infinity {of necessity. these object points are created by con-
vergent light beams from some other aptical systern), the image
+moves’’ ahead of it in the same direction — through right infinity,
»around the earth’” and over to left infinity, and thence toward the
lens. With a real object point {which moves from left infinity towards
the lens), the corresponding virtual image point will continue to move
ahead of it to the right (still closer to the lens}, but also in the same
direction as the moving object.

The point of these two tables — one {a few pages ago} for a plus
lens, the other for a minus — is to demonstrate that the sign of the
lens makes no difference to one clear-cut conclusion: the object and
its image afways will move in the same direction. When any object
moves to the right or left, its image by any type of optical system. plus
or minus, will do likewise. This point is quite important in helping you
to understand the movement of images when dealing with the eye and
with cases of refractive error.

Object Space Vs. Image Space

Up to now, | wanted you to get the "“feel” of handiing these terms
yourself, since sometimes when dealing with concepts, intuition is
better than definition. Now, however, to set the record straight, | will
try to clarify the two conceptual terms, “object space” and “image
space’’, both of which | have already used freely. But by now., you
afready should have an inkling of what they mean.

Prior to impinging on any lens, ail rays which leave an object plane
are said to be located in the “object space.”” After the lens adds its
own vergence to those rays. the resultant vergence is said to exist in
the “'image space.”” That sounds easy enough. However, the lens which
creates those spaces “looks™ like it physically separates the “"object
space’ on the left from the “image space’ on the right — it does not.
Both spaces co-exist simultaneously on both sides of the lens, and that
is what makes this concept confusing.

Object space exists only for rays and ray directions before they are
influenced by a lens. Consider that object space is composed of alf
points which could possibly serve as an object for the lens. We have
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studied about divergent object rays which come from a real object
located on the left of the lens; we have also seen how convergent
object rays might optically form a virtual object on the right of any lens.
The latter object also is in the object space of the lens. So, we can ses
that object space does completely surround the lens. Remember then,
the object space of a lens may contain real or virtual rays, but before
they have been influenced by the lens.

Image space, on the other hand, exists only for rays after they are
influenced by a lens or an optical system; this space exists only be-
cause the lens has already exertad its influence on some object rays.
Image space also completely surrounds the lens; it the image is on the
right of the lens, it is real, if on the left, it is virtual. In either case. the
image Is still in the “‘image space.”

You should now understand that every lens is complately engulfed
— at the same time — by both object and image spaces. Contrary to
appearances, these were not created to confuse you. Keep the above
descriptions in mind.

So far. we have looked at axial object points and image points and
diagrammed their conjugate relationship, but we also elaborated
{through our discussion of the axial focal points) that the points also
represent planes. These object and image planes which contain the
corresponding axial peints are parallel to the lens plane and possess all
the vergence properties (at the lens plane) of those points. One locates
these planes relative to the lens the same way as one does the axial
points {{/ + P = V). Any object point in one plane has its image in its
conjugate plane and, at the specific location denoted by that single, un-
deviated light ray which leaves object point X and passes through the

lens nodal point.
O0BJECT
x| POINT
afer—"
IMAGE
X POINT
e
OBJECT LENS IMAGE
PLANE PLANE PLANE
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What else can we learn from U + P = V?
If we know any two terms, the third can easily be calculated and all
sorts of nice little problems become manageable.

EXAMPLE |
What strength lens will image an object tocated 25 cm to the left of

it onto a screen 1 meter distant to the right?

ANS:
-4 +P+|
X x'
U+P=V
—4 4P =+1
P=4+5D

A + 5 D lens fills the bill.

EXAMPLE 2
How far away must an object be to have its image sharply defined
on film which is located 50 mm behind a2 + 25 D camera lens?

ANS: v = 50 mm = .05 meters, and P= + 25 D.

U+P=V
U+256= ]m_W {See next figure.)
U=20—25=—5D
:n“mﬂio.MBEIMOoB

The object X must be 20 cm away (to the left).
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EXAMPLE 3 }
Exactly where, between an object and its corresponding image, i

must a + 4 D lens be placed so as to have the object and image sepa-
rated by 1 meter?

ANS: X and X’ are 1 meter apart; u is the object distance and v is the
irmage distance. {See diagram below]).
In absolute distance measurement (without regard to the signj. since

u + v = 1 meter, v = {1 — u) meters.
+4

i “

v

U METERS —————{|-{/ METERD
| METER

We are given that the lens is between the object and the image, so
whatever distance u happens to be, the object vergence U/ must be
minus at the lens plane. With comparable reasoning, V must be plus.

So we have Qn.l.Pm_._n._\n. 1
u 1—vu
Now, substitute these for U, P, and V in our general formula,
U+ pPp=V
1 1
—u tAET =,
22

To solve this equation for u, we must simplity it by eliminating the de-
nominators. This manipulation requires easy 9th grade aigebra.
—(1=—ul+ 4wt —u)=vu
—1+ut+du—4a45=u
— 1+ 4u—445 =0

Multiplying by {— 1} A —Aau+1=20
(20—1) =0

Take the square root; 2u—1=0
2u =1

u = 14 meter
1—u=v =% meter
Therefore, the lens would be iocated 50 cm from both the object and
the image, that is, half-way between them.*”

EXAMPLE 4

A convergent light beam from a projector located on the leftcreates
a clear, 3 cm diameter spot image on a screen on the right. You don’t
care about the size of the spot, but you want tc move that image 25 ¢cm
to the right without budging the projector. You have available a —2 D
lens to help you. Where must you hold this lens to perform this image
displacement?

ANS: The distance X to X’ is given as 0.25 meters.
-2

~_J

-

\.&Mltl_.]ll
L

e
\ 0.25 weTens ||1|—

Let ¥ = the distance from our lens to the image at X {which would
have Jmm_._ produced by the projector if the lens did not intercept the
rays firstf) This ﬁ the object distance for our — 2 D lens. The object
vergence {J = +4 —: P = -— 2; the image vergence V = L

gence V = -+ rog oy

u
* i the + 4D lens were not s i i
pecified as being between X and X’ i
hecome possible. Can you find them? ¢ two ofer solutions
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U+P=V
1 1
to 2=+
(25 + u}— 2{(u) (.26 + u) = u
26— Bu—28 =0
Multiply by (— 1): 2u° + Bu— .26=0
Factor: {2u— 5)(u+ B5)=0

Thus we have two answers to the problem:

al) 20=.5
u = .25 meter
v =+ 25¢cm
b} u=—.5

y =—50cm
How do we interpret these answers?
a} The — 2 lens should be held 25 cm in front of the original screen.
This would move the projected image to a position 25 cm further away.

+4 -2 +2 ACRZEN S.nncm..

A—.\ X X

_I Mao..lcT Nao-_l.._

b) But, we see from our algebraic solution that another possibility is
suggested (see figure below). An object distance v of — 50 cm tells
us to hold the lens in such a way as to present a diverging beam to the
jens. This is possible only if we place it in the light path after the pro-
jection image is formed at X. When there is no screen in this position,
the rays will continue on, but then they will be divergent. Placed at
— 5O cm, the — 2 D lens “'sees’” an object vergence of —2 D and
creates an image vergence of — 4 D, since
U+pP=V
— 24 (—2)=—4

An image vergence of —4 signifies that our lens creates a virtual
image located 25 cm to its left.

PROJECTOR
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The original object point X would indeed be imaged at X', 26 cm
further to its right, as was the condition stated in the original problem,
but of course, we had no way of knowing a priori that the math salu-
tion would include a virtual final image. Though this answer fulfills
the image criteria, it is impossible to focus this image without addi-
tional converging lenses, so this answer is not a practical solution,
while answer (a) is correct and practical.

OTHER EXERCISES —

: If 1 asked you to tell me what type of lens {plus or minus) would
image axial point X at X’ in the above situation, you shoul/d be able to
respond. If you can’t. tollow along with my reasoning: Since X is on the
left of lens P, light rays will diverge toward the lens. After being in-
fluenced (refracted} by the lens, all rays from X must be bent as if they
mm_.:m from X'. So, draw any ray from X and notice how the lens hends
it so that it would appear to come from X'. If it converges the ray, the
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lens must be plus; If it diverges it, the Jens must be minus.

P here must be plus since the light ray is bent downward, towards
the lens axis — that is, convergence is added by the lens. The added
convergence though was not sufficient to form a real image point. X'
is thus virtual.

What if X is on the right ot lens P?

The only ditference with X on the right is that this signifies that light is
convergent (at the lens plane) toward object point X (which must thus
be virtual). After a ray drawn toward X hits lens P, it will act as if it
were directed from axial point X’. Again note only what happens at
the lens to that single light ray. Since the light ray is bent upwards,
away from the axis, divergence must have been added by it; therefore
P here must be a minus lens. In this example both X and X' are virtual}

Try to label a few other lenses as plus or minus:

26
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ANSWERS: A.Plus B.Minus C. Minus D. Plus

MULTIPLE THIN LENS SYSTEMS

When you have to find object-image relationships through mare than
one lens, you must treat the vergences separately for each lens in
succession, always dealing first with the first lens to encounter the inci-
dent light. The image position created by the first lens will then be the
object position for the second.

But be careful here; we said we are dealing with positions. The
image vergence created by P. (the first lens in a series) is not the
same as the object vergence for P: unless the lenses are in contact; you
must calculate the appropriate vergences from the known positions. So
first. locate the position of the image created by Py; then find the

distance of this image (now the object) from P.. The reciprocal of this

\ 1 . .
distance .mmﬂﬂumv is the object vergence presented to P, and don't

torget the sign of this object vergence.

EXAMPLE: ({Consult the figure where each lens is considered inde-
pendently):
lens P, =+ 2D
LensP, =+ 1D
Lens P = —4 D
A real object is 1 meter to left of P..
The distance between P, and P; = 25 cm.
The distance between P, and P, = 23 cm.
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B. But Psis situated 26 cm from P\; therefore, the image rays from P,

Lens Py = + 20D R . . R
will strike P2 before the real image is formed further to the right. As far

tensP:= 4+ 1D

A R Lens P, = — 4 D as P, is concerned. it “sees’ incident (object) rays aiming at X', which
WITH is still 76 cm further on to the right. Hence, the incident vergence
REFERENGE L 1
ToO PR of those rays at P, is + DIE e ™ + 1.33 D.

In summary, the image (X,'} formed by lens P, with a vergence of
X + 1 D now becomes an object {X.) for lens P. but with an object
vergence at P: of + 1.33 D.
| weTER ||..T||_ ugTEN i With reference to Lens P.
cu + hn == —\u
+133 4+ 1= V.= + 233D
B. So the image vergence after P is + 2.33 D.
WITH 1
REFERENCE . = V2
T0 PR . Vs
! -.W. = mnm therefore, va = + 43 cm, that is, 43 cm
| to right of P..
i C. Since P, is located only 23 cm from P. the rays will strike P:
before the real image is formed. The object distance to P, is equal 1o
| {43 cm — 23 cm) or 20 cm to the right of P, and thus, the object
C. A kR __ vergence {Us) presented to P is + 5 D.
WITH M N[} _ .
REFERENCE { With reference to Lens Pu:
™ B t Us + Py = ¥y
%, +5—4=+1D
Xy _ The final image vergence is + 1 D: thus, the location of Xi" — the final
W/ JiLN ] image formed by the combination of all three lenses — is a rea/ one, 1
43cu -] i meter to the right of P,
2 o 100 o | i
»uo.....m.oc__f _ So much for locating by simple algebra the locations of conjugate
- objects and images relative to single or multiple thin lens systems. One
should also be able to determine readily these same relationships by
A.  With reference to Lens P: : an accurate, graphical method. This will be taken up now.
U+P=v H
—1+2=+1 i
Therefore, the image is located 1 meter to right of P, {at X\'). ﬁ
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GRAPHICAL ANALYSIS

We have clearly spelled out that an infinite number of light rays
will emerge from each point making up any luminous object. Let us
concern ourselves with the rays which leave Point A, the tip of an
object which sits on the axis of lens P.

OBJECT LENS P
A ¢ M

In the diagram, light rays are shown being emitted by point A. Many of
these rays will fall on lens P — those emitted between the extreme,
“|imiting”" rays C and D which just barely hit the edge of the lens.
Each ray will be bent a different amount, but still towards the same
image point. If we knew the exact path taken by any of the rays after
refraction, we could follow those and find where any two of them
intersected; we-would then have localized the image point correspond-
ing te abject point A. Luckily, we do know the precise path of three
particular rays; (we have already dealt with these). We know the exact
road these rays travel and can utilize them in a simple graphical
analysis. These three “known’* rays in any optical system are as fol-
lows (see next diagram):

1) The “chief’’ ray; that particular ray from A that aims directly for
the lens nodal point will continue undeviated.

2) The ray through the primary focal point F: we know that a/l rays
originating at F must leave the lens parallel to the axis. Thus any single
ray from any object which happens to pass through F will also leave
lens P parallel to the axis.

3) The ray parallel to the lens axis; all rays whichareparallel to the
lens axis in the object space must, in the image space, pass through the
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secondary focal point F' of the lens. Thus, if we select the one ray
which leaves object point A directed paralle! to the lens axis, it also
must, after refraction by lens P, be bent toward F'.
Given lens P with
N = nodal point
F = primary focal point
F' = secondary focal point

I

£
M

—

V

Ray 1 drawn through N is undeviated.

Ray 2 drawn through F must emerge from P parallel to axis.

These two rays cross at A’ and establish it as the image point of
abject point A. To check. continue with ray 3.

Ray 3 leaves A parallel to axis in the object space and must pass
through F' in image space. We see that all three rays intersect at A,
and firmly fix A" as that image point conjugate to A, Object point X
on the axis is located at the intersection of a perpendicular dropped
from point A. X' is similarly located in the image space once A’ is
determined.

With any given lens and a given object point, we should easily be
able to construct graphically the corresponding image point (and vice
versal) Remember, any two of the above mentioned three rays will
suffice. For practice here, you should draw all three.

. >:o=._ma aid: it you find that in drawing rays 2 or 3 that the lens
n_mma_uz is not large enough in diameter. simply extend the size of the
lens with a dotted line {as in the figure below). All refraction of light
rays can schematically be considered to take place somewhere in the
lens plane, even it there is no actual lens material there! For example,

to n_‘mi ray 3 parallel to the lens axis, you must exiend lens P diagram-
matically upward as shown here.
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When we are given only an axial point X and wish to find the cor-
responding image point X', the three ray technique described above
will not “‘work™: all three of the particular rays we have enumerated
are still there, but happen to be superimposed upon the line repre-
senting the lens axis, and so, we would be unable to locate any inter-
section of rays to find point X'. A slightly ditferent technique can help
us, however.

P

SECONDARY
1" FOCAL PLANE

From X draw any arbitrary ray 1 which intersects lens P. We know
that any and all rays in the object space {even though they do not arise
at X}, if parallel to ray 1, will have to come to a sharp focus some-
where in the secondary focal plane. Let us draw such a ray, 2, parallel
to 1, but through N, the lens nodal point. Ray 2 must then be undevi-
ated. {Remember, we can draw this helpful ray even though we know
it does not denote a real ray originating at X. It is simply a logical
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device to let us fix point Z in the secondary focal plane.)

Since all rays parallel to 1 and 2 in the object space must pass
through Z in the image space, ray 1 also must be bent by the lens to
pass through Z; thus, ray 1 is given a definite direction in the image
space. But, we need the intersection of fwo rays to determine image
point X'. Can you see where we can find the second ray? You should.
That second ray is the one which travels along the lens axis itself; we
know both object X and X' must lie along this ray. Thus. the intersec-
tion of ray 1 and the lens axis establishes X' as the image paint of X.

Let us use our same 3 basic rays to indicate graphically the image
created by a minus lens with a virtual object, a samewhat more compli-
cated. but stitl very useful exercise.

Given AX — a virtual object on the right lens of P. a minus lens.
Locate the image graphically:

Solution (see figures below}:
To establish object AX on the right of lens P, the rays must be con-
verging as shown.

- P
/m—m VIRTUAL OBJECY
WOOMING RAYS e A
FORMING POINT & ~JTIzz=cs,
~AN OBJECT POINT I
FOR LEWS P \.\I\\.\.\l\\ll\l P
¢ N __-ZF
\U\\ X
"

{See next figure.)

1. Of all the rays aiming for point A in the object space, select the
one ray, 1, which is directed towards A and passes through N. That
ray must he undeviated.
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2. Select ray 2 {another of the rays aiming for A} which passes
through F, in the “object space’ even though it appears on the right
of the lens. This ray must, after refraction, emerge from lens P as a
ray paraliel to the lens axis. (Watch this next move since it is a bit
tricky!) [ the direction of ray 2 after refraction were extended back-
ward (now within the image space}, it would intersect ray 1 {also in
the image space) at A’', which must therefore be the image of A. To
check this point, utilize ray 3.

3. Ray 3 is selected as that ray aiming for A {in the object space)
which is parallel to the lens axis. After lens refraction, this same ray
must pass {or seem to come to) F'. Extended even further back from
F’, ray 3 also will intersect rays 1 and 2 precisely at A’, and confirms
its location.

Rays 1, 2 and 3 after refraction {in the image space} seem to come
from A’ {a virtual image} and any eye {or optical system) peering back
through lens P to receive these rays will see A'X' exactly located as
diagrammed here.

It one fully grasps the principles underlying the use of the three rays
to construct a display of the object-image relationship, he need have
no fear in facing any construction which might be encountered later.

Try two more construction prablems: If you find you are unable to
draw these out for yourself or you cannot understand the answers
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given, please go back and reread this section on graphical analysis.
GIVEN: The lens position and the object position and size.
FIND: The position and size of the image in both problems.

PROBLEM: A

ANSWER:

M h = ——— T

OBJECT

PROBLEM:

LOCATION OF
REAL IMAGE

0BJECT

T} e ]

LOCATION OF
VIRTUAL OBJECT
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ANSWER: 7

A A
- - |\| - @
F- 1 ~~._F
x X
VRTUAL
IMAGE (0
MM

If you wish to construct the rays from an object through muftiple
thin lenses, you must use the same method shown here for each lens
separately and consecutively. First locate the first image by lens 1.
That image then becomes the object for the second lens; this lens
forms another image which is “‘seen’” by the next lens and becomes its
object, etc. The final image is fixed when all lenses have exerted their
own particular influences on the original object rays.

LINEAR MAGNIFICATION

Though we will get into a more complete discussion later of magni-
fication as It pertains to vision, we should mention finear magnification
here to complete our image construction section.

So far we have not mentioned anything about the relationship ot the
linear size of the object to that of the image. That is, when object point
A is off the lens axis, how far off the axis is the image? Simple geome-
try tells us this answer in ail cases.

Aside from the lens axis, the only other ray necessary for us to see
this relationship clearly is ray 1 — that through the nodal point.

These rays establish 2 similar triangles AXN and A'X'N.

N N

PLUS LENS

T
<
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No matter what the power of lens (plus or minus) — no matter where
the objects and images are in relation to the focal points — these
triangles will always be similar, even, of course, if the object and
image are on the same side of the lens (as in the figure above).
You should, therefore, be able to see that the sizes of the
object and image are always directly proportional to their distances
from the lens. The LINEAR MAGNIFICATION {M) is hereby defined as
the ratio of the size of the image to the size of the object. Refer now to
the above diagrams:
Image size 1 = A'X’
Object size 0 = AX
image axial distance v = NX’
object axial distance v = XN

By definition,
I A'X
M=05="ax
But since the triangtes involved are similar,
AX ONX
AX T XN
! v
Thus; =7
. 1 1
Since v Hﬂm:n_ U=
v u
u ¥

So. we have three different, but exactly equivatent, ways of expressing
the linear magnification M;
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M may be greater, equal to, or less than 1, depending on whether the

image size is (respectively) iarger than, equal to, or smaller than the
object size.

That's all there is to it; and it makes no difference whether the
objects or images are real or virtual. Continue to use our same sign
convention for vergences and distances and you will find that when
Magnification Power turns out to be minus, this will always indicate
that the image is inverted compared to the object, while plus "'says’’
the image is upright,

To find the magnification M, you can use either a geometrical con-
struction (to a set scale) or our simple U/ + P = V relationship. The
algebraic expression is obviously the easiest and most direct method
to use routinely.

PROBLEM: What is the overall magnification and the actual size of
the projected image produced by a 5 cm focal length projection lens
using a 35 mm width slide transparency located & cm from the lens.
The image is sharply projected on a screen.

ANSWER:
To obtain the Magnification, we must know the image distance {or
its vergence) at P.

U+ P eV
1 1 1
—oetos V"V
—167D+4+ 20D =V
+33D=V
P_\H v =+ 30cm.
So, the screen is 30 cm to the right of the lens; u = — 6 cm
v = 30 cm
30
a) M ﬂl“ll.l.”|l|..lmx
Or even simpler, just use the vergences U and V themselves:
M u .Idm..:ullnmx
“v~T +33D
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This means the image is 5 times the size of the object; the minus sign
signifies that the image is inverted related to the object.

b) Since the object is 35 mm wide and the magnification is 5 X, the
image is 5 times 35 = 175 mm wide.

PRINCIPAL PLANES AND POINTS

| would like now to introduce another set of terms to complete
{not complicate) our introduction to the nomenclature applied to
optical systems. | will expend slightly more space on this subject than
it warrants for the level of optics required by students, but so many
budding ophthalmologists continue to ask me to explain (not just de-
fine) the concept of principal planes that | felt it would save time in
the long run to do so here.

When we were studying image formation by a series of thin lenses,
we showed that we could locate the final image by either numerical or
graphical means. but only after processing object rays successively
through each lens element in the total system. We will now demon-
strate diagrammatically a way to simplify the situation, even with a
complicated optical set up. {See the next figure}. We will then elimi-
nate all the refracting elements and replace them with two theoretical
{though mathematically proper) “‘refracting’’ planes. The positions of
these planes will be determined. These planes will permit us to neglect
all the lenses shown in the figure; that is, each ray emanating from
object point A will be able to be treated as if it were influenced only by
these two planes. These key reference planes are called the PRINCIPAL
PLANES — one primary and one secondary. Their intersections with
the lens axis are correspondingly called the PRINCIPAL POINTS.

To see how these planes are located, let us begin with a diagram;
but don't let it frighten you. | have purposefully chosen a rather com-
plex system of seven assorted lenses to demonstrate how these ref-
erence planes can simplify the optical considerations.

39



|
R 9 Py P R | Py
Ao M N |
A | !
_ G B o R B i
F ! ] s
X 1 i
i i
] B sl A
| |
Vot wo A
! i
H o
PRIMARY SECONDARY
PRINCIPAL PRINCIPAL
PLANE PLANE

Somehow, by any mechanism we wish {optica! bench experiments
or actual calcuiation), we locate F. the primary focal point of the
entire system (not just of lens P.}, and F', the system'’s secondary focal
point. We succeed in imaging object AX through all seven lenses to its
final position A:'X)"; s0, A, is fixed. Now, let us draw the one ray from
A to lens P, which passes through F. This ray will then go through the
entire optical system. (To know the exact path of this or any ray
through any such complex system, one would have to go through a
pracess of ‘‘ray tracing”, determining the Influence of each lens on
the ray. So, let us not worry about the exact path through the systern.)
Suffice it to say, after assorted bumps and grinds, the ray leaves the
last lens P; headed directly for A;". This final ray will be paralle! to the
axis since it originally went through F. the system’s primary focal point.
The final ray is shown as ray Z.

Eor our analysis it will make no difference what actual bending and
flexing this ray has been subjected to in its passage through this com-
plex system. If we simply extend ray Z straight back as if it were
uninfluenced by any lens, it will somewhere intersect the extension of
our original object ray which passed through F of the lens system. This
intersection point determines a plane H (dotted in the diagram} which
we make perpendicular to the lens axis. it should be obvious that our
light ray from A (through F} could be considered as being re-
fracted ‘‘by some mystical power” located in plane H, whence it would
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|eave parallel to the axis and later arrive at A;. Any plane so con-
structed is named the primary principal plane.

Back to object point A: Also emitted from A 1s one ray which leaves
uma__m_ to the axis. It also is refracted by the entire lens system and
finailly emerges from lens P, aiming towards A", This final ray must
cross the axis at F'. This latter ray {Y in the diagram} is extended
further backward to intersect the extension of our original object ray
{the one that left A parallel to the axis}; this intersection determines
another plane — the secondary principal plane — which is a “'surface’
acting as if the final refraction took place there. This plane is labeled
H: in the diagram.

These two planes, then, can be considered and treated as if they re-
placed all the other optical elements. This is schematically shown in
the figure below:

x-—.—)
|
_—— e —— i.---_.——.
e 3 —_——
o

The positions of these planes can be accurately determined by mathe-
matical computations, but these become more arduous as the lens
systems become more complex; they are relatively easy to establish
on an optical bench in the laboratory, if one wishes.

You can see that there is a physical separation apparent between
planes H and H’. Here the space seems large; other times the gap is
very small. In either case, in geometrical constructions this gap is
treated as if it weren’t there, and any ray from object A which hits
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plane H, teaves plane H' at precisely the same height — as it the planes
were in contact. {You will not usually see any rays drawn within
the space HH'}.

THE GARDINAL POINTS
OF AN OPTICAL SYSTEM:
Fand F'
Hand W
Nand N

Since any incident ray impinging on plane H will always leave plane
H’ at the same height from the axis, we say that the principal planes
exhibit the property of unitary linear magnification. (Also, these planes
are actually conjugate, that is, one is the image of the ather, opticaliy.}

In the above figure, ray 2 from A through F will arrive at plane H;
it will leave from plane H’ parallel to the axis. Ray 3 from A drawn
paraltel to the axis will leave plane H' directed to F' and on to the
image As. Ray 1 from A, which aims for the axial point of plane M.
exits from plane H' also at the axis and at exactly the same angle as the
incident ray! This should call 10 mind the ““chief’” ray which, when we
dealt with the simple thin lens, passed undeviated through the lens
nodal point. {The close relationship between nodal points and principal
points will be discussed shortly. They are not identical, though here,
where we have labeled H and H' as the axial principal points of their
corresponding planes, these same points also represent the nodal
points of this system; that is, N and N’ happen to be superimposed on
H and H'.)

In a complex optical system such as this {actuaily, in any optical
system}, the principal planes are the reference planes; all object and
image distances are measured relative to them. So also, the primary
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and secondary focal lengths are measured to H and H’ and are defined
as FH and H'F’, respectively. But this requires that the position of H
and H’ be known; if so, distances FH and H'F’ will provide a measure
of what is called the true or equivalent focal length — the reciprocal
being the equivalent power. Though this latter unit is generally con-
ceded to be the standard description of a lens’ power, it is not a
clinically useful unit, because the positions of H and H' are not readily

aar

found — they are “‘intangibie”.

So. when the principal planes are not identified or localized for
you, the focal lengths must be measured in reference to some other,
more convenient surface, like the axial point on the anterior surface
of the lens; its distance from F would then be called the “anterior”
focai tength. Better yet, measure from the axial point on the posterior
surface of the tens to F’, the secondary focal point. This distance is
called the “posterior’” or “back’ focal length.

Become familiar with the “back” focal length; it is the lens focal
length that is implied {when not stated to the contrary) whenever you
deal with ophthalmic lenses. The clinical instrument known as a
lensometer measures this “‘back’ focal length of an "unknown’' lens:
the instrument’s calibrated dial indicates the reciprocal of the “back™
focal length, that is, the “back’ or vertex power. (To add further con-
fusion. “back’’ vertex power is also called the effective power of a
lens.) In any case, the vertex power and not the true power is the
clinically important one.

Qops! We seem to have drifted off the subject of principle planes
for 8 moment. Back on the track now, | must stress that distances FH
and H'F’ {the true focal lengths) will be equal to each other {as are
both the focal lengths of any of the thin lenses we have already
studied) if the media composing both the object and image spaces are
of the same “refractive index”; (we will get to this term later, in the
next section.) On the other hand, if the “refractive index” is not the
m.m...:m in both “"spaces’, the foca! length on the side of greater refrac-
tive index will be longer. More about this later.
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NODAL POINTS

We now come to a place where we ¢an treat the nodal points more
specifically. By definition, they are a conjugate pair of axial points (the
object and image of each other} which have the following property:
any ray striking the primary nodal point leaves the secondary noda!l
point with an identical Inclination to the axis. (For the sophisticate,
they are points of unitary angular magnification.)

if N and N’ are nodal points of an optical system, and ray 1 strikes
N at «° to the axis, it wili leave N’ at that same angle.

AXIS

As long as the medium composing the object space and the
medium making up the image space are identical — so far, we have
considered only air in both ‘‘spaces’’ — the primary nodal point is
located at precisely the same position as the primary principal point,
and the secondary nodal point at the secondary principal point, that
is, they are superimposed; however, if the media are different (as they
are for the eye) both nodal points together shift away from superposi-
tion with the principal points. How much they shift depends upon the
media. They will always shift in the direction of the greater refractive
index. One principle is always true: The primary focal fength of any
optical system is always equal to the distance between N’ and the
secondary focal point: that is, FH = N'F’. Recall this later when we

deal with the eye.

it should now be clear that nodal points {there are no nodal planes)
and principal planes and points, as well as focal points, are con-
venhient and important reference positions for all optical systems and
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all join together to describe completely the focusing action of a
particular system. The six axial points we have thus far discussed —
(two principal. two nodal, and two focal) are called the cardinal points
of any optical system. {Two other pairs of points which you may see
jisted in other texts are much less important but are also sometimes
included as ‘cardinal’”” points — these are the negative nodal points
and the symmetrical paints. Farget them for our study.) .

In the complex optical system demonstrated here {as well as in
the eye), the primary and secondary principal points are physically
separated from one another; (s0 also would be the primary and secon-
dary nodal points N and N’). The actual separation between H and H’
and between N and N is always identical for any given optical system;
{even when the Ns are not superimposed on the Hs). But, this mo_omﬂm“
tion does vary with the nature, complexity and linear separation of the
alements making up the complete system. For the human eye, the
separation between the primary and secondary principal points {and
aiso the corresponding nodal points} is only 0.3 mm.

So, you might ask, when we began fiddling with our single thin
lenses. o_u_msum:m the vergence of object rays (using & + P = V) and
constructing images by drawing those three particular rays, how come
we oo&u.ﬁm? ignored H, H', N and N’ as reference points? The
w_dms_.mq is, we didn’t. With thin lenses, all four of these points coincide
with the vertex (axial position} of the lens. It is only with more com-
plex systems that individual attention o these points becomes impor-
tant. Thus, you should now realize that with thin lenses, even :_oﬂ h
the four individual cardinal points are not obvious, :..m< are S%m
nonetheless, at all times, huddled together and hidden.

SNELL'S LAW AND REFRACTIVE INDEX

k. fo need to have a few more principles at our fingertips before we
=__._ indulge ourselves with the ‘meat” of our course — the optics of
B eye, the subject which really is what we've been waiting for. This
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present section, of necassity, is a bit mare mathematical, but certainly
not offensively so; so, approach it with an open mind.

At the outset, we began by leaping headlong into the concept of
vergence and how lenses change that vergence, but we neglected to
give you any background in how lenses really work and what governs
their activity. As good a place as any 1o begin is with the basic and
fundamental law of optics which makes all tenses and refracting sur-
faces work to form images — Snell’s Law.

This law concerns itself with exactly to what extent each light ray
is bent by surfaces which are separated by media differing in refrac-
tive index. From your early physics courses, you should remember that
this index is a property of transparent media: as light passes through
any medium other than a vacuum, it is slowed down. The index is
simply the ratio of how {fast light travels in a vacuum compared to its
speed in the specific medium. The refractive index

velocity of light in a vacuum

= Velocity of light in the specific medium

Since the denominator of this fraction is always less than the numer-

ator, this ratio n is always greater than 1 for any medium other than
the vacuum (or, more practically. air}.

Interestingly. the velocity with which light travels in any medium
depends not only on the medium itself but on its own wavelength.
£ach wavelength has its own ““private” index of refraction for each par-
ticular medium; the index you usually see listed in tables is for the
specific wavelength of sodium light. 589 nm {10 ° meters). For water,
this particular index is n = 1.333, for crown ophthalmic glass {1.523).
for plastic (1.491 }, for the lens of the eye (1.42}, and for the cornea
{1.376}).

When a ray of light which is traveling on one medium hits another
medium of a greater index of refraction, that ray of light will be slowed
down (and vice versa). If it strikes the material perpendicular (“nor-
mal**} to its surface, though it is still slowed down. it does not change
direction but continues on In the same direction, 90° to the plane of
the surface. If, however, the ray of light strikes the new material at
some angle {inclination} to the “normal’’, it will be deviated after
crossing the boundary. Snell’'s Law will telf us how much this ray is
bent.
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Let n be the index of refraction of the medium on one side of the
interface and n’ its counterpart — remember that these indices are for
a single wavelength of light. The angle which an incoming ray makes
with the "‘normal’” we will call i. After entering the new medium, the
ray is bent — toward the normal if n’ is greater than n. The m.:m_m
after refraction is denoted by i. / and i/ are called the angles of inci-
dence and refraction, respectively, and are always measured to “‘the

normal”’, the line drawn perpendicular to the surface at the point
where the ray strikes it.

._._._m. basic law of Snell — which governs all refraction and forms
the basis of how lenses work in their changing the direction of light
rays — is as follows:

nsini=n"sini
. Simple enough; but, since this represents a trigonometfic relation-
m_:_u. let us try to simplify it even-further, (I feel it is definitely worth-
while to go through this completely, since you will automatically pick
up familiarity with some units you shouid understand.} i

We will begin by looking at how anglesg are measured.

ANGULAR MEASUREMENT

:::.: :_.n: mn_z.uo_ geometry and trigonometry, you were given different
s with which t0o measure angles — the degree and the radian.
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When studying the field of strabismus, you will sncounter three addi-
tional ones — the prism diopter {the only important one}, the centrad,
and the meter-angle. It would be useful to review each of these units
briefly:

a) The Degree — simply defined as 1/360 of the complete angle

around a point,
P -
360°

b} The Radian — Construct a circle of any radius, and draw two
radius arms extending from the center.

/
AN

The included angle i measures ? radian when the actual length of the
curved arc subtended is equal to the length of the radius.
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it the circle circumference were made of string and the stiff-radius
ends were fixed to it and the included angle was 1 radian, one can
see that angle i could increase somewhat before the string became
taut to a straight line, When this point is reached, i would, of course,
then be 60°, since the “straightened out arc” would still be equal to
the length of the radius. This makes the triangle equilaterat {with
each angle equal to 60°). So, a measure of 1 radian must be fess than
60°: let us now see how much less and how we find the exact equiva-
lent.

In any circle there are always a fixed number of radius lengths
which (laid end to end) would complete the circumference. That
number is 2=; that is, there are {2x) radii which make up the complete
circumference of 360° (Remember? C = 2xr). Since each r measured
along the circumference represents 1 radian of central angular
measure (the definition of “‘radian”), and since there are 2= radii in
the complete circumference, there must be 2= radians of angular
measure equivalent to 360°. Since 2= radians = 360°, 1 radian must

equal 360° divided by 2= (approximately 57.3%); and conversely,

2; . . .
1° would equal wm._,o radians. The reason we are dragging this unit up

from the deep dark past will soon be apparent.

¢) The Prism Diopter — The angle corresponding to an apparent
displacement of 1 cm at 1 meter distance.

SOMETHING WHICH

DEVIATES THE
LIGHT RAY

Ray FA [after encountering some optical device) is deflected from
its “'straight ahead'" path by angle { towards C. Since triangle ABC is
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210
.}lWl 4
By definition, when § = 14 {prism diopter),
8C = 1 cm and AB = 1 meter.
01 meter - 01,
1 meter
By the same reasoning, if # is 54, tan § = .05.
Now you should see that the converse is also true, that is, for any
angle 4, the expression 100 tan @ equals the angle in prism diopters.
So, the conversion from degrees to prism diopters {and vice versa) is
tied to the tangent of the angte, but, herein lies a problem. Loock at
Table |, which demonstrates the relationship between § in degrees, the
tangent 8 (looked up in a standard math table) and the prism diopter:

a right triangle, tangent ¢

Then, tan § =

TABLE 1
100 Tan 6
Degrees Tan 8 {Pristm Diopters)
1 01746 1.7
2 03492 35
10 17633 17.6
20 .36397 36.4
30 57735 57.7
44 96569 96.5
45 1.00000 100.0

At small angles, 1° is equivalent to 1.73; at larger angles (say be-
tween 44° and 45°} 1° is equivalent to 3.5641 What self-respecting kind
of unit would change its size along a scale? It should be clear, then,
that the prism diopter {100 tan §} is not a true unit; it keeps changing
its size compared to the degree (which, of course, is a true unit}.

Don’t get me wrong — the prism diopter is a wseful “"unit”, but
only for measuring small angles. in the typical clinical situation when
you are measuring, say, esotropia, you usually deal with angles of up to
about 30°. in this range of 0° to 30° we can consider 1 degree approxi-
mately equal 1o 2 prism diopters: this assumption is actually quite
close to being correct. But, keep in mind that the error introduced by
using this approximation with larger angles can be large: the “unit”
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becomes rapidly meaningless when dealing with angles greater than
45°.

d) The centrad {7) is similar to the prism diopter except that the
1 cm length displacement {at 1 meter) is measured along the arc of a

circle instead of a straight segment. For small angles the centrad is
muu_.oxw:,.mﬂm:\ equal to the prism diopter.

A | meter B

i
r
___ lem ARC LENGTH

!

Now, forget the centrad; it is outmoded and obsolete.

e) The meter-angle: This angular measure is also not a very im-
portant one, but it is encountered in the squint literature in connection

with the determination of the ratio between accommodation and its
L L . . AC
synkinetic accommodative-convergence, that is, the e ratio. {The

prism diopter is much more appropriate as the unit for this purpose.}

In any case, when a close-up obiect is being scrutinized by the eyes,
the angle {of convergence} between the two visual axes may be given
in meter-angles.

\mﬂx.ﬁ._oz
POINT

9:25 MA. X
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If the eyes converge to point X, angle ¢ is automatically expressed in
meter-angles when the distance of X from the eyes is given in diopters
of vergence. So, if X is 40 cm away, angle 8 is 2.5 meter-angles.
This “‘unit’”’ also is not a true unit since the angle & (if it is ex-
pressed in degrees or radians) depends on how far apart the eyes are;
that is, the true angle should depend on the interpupillary distance
{p.d.}. If the p.d. were greater than that shown here,  would actually
have to be greater: yet it still remains only 2.5 meter-angles! The use
of “meter-angles’” avoids taking account of the actual p.d., and this
turns out to be both the advantage and the disadvantage of this "unit™.
We would be quite well off without this term too.

The student may question the need for this digression here into the
units of angle measurement. In its defense, not only did | want all
readers to understand each unit, but | also hoped that this would allow
us 10 begin at the same baseline of information regarding the radian.

We have already noted that central angle i (in the figure below)
can be expressed in degrees or radians. The subtended arc also can be
given in either degrees or radians, its measure being exactly equivalent
to that of central angle i (that is. we can speak of the arc itself as equal
to, say, 45° or .78 radians) However, the actual measurement {in
inches or meters) of the length of arc i is obviously dependent on the
length of the radius. With the same central angle, the longer the radius,
the longer the length of arc i. If the angle i is 1 radian, arc | exactly
equals the length of the radius; if angle i = 0.5 radians, arc i equals
one-half the length of the radius. Thus, arc i always equals the central
angle i (in radians) times the length of the radius.

A '
i

13

tan
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We have drawn the circle above with its center at C and two radii,
CA and CB, and constructed two perpendicular lines to radius CB; one
is dropped from the end of radius CA, the other at the end of radius CB.

.. AD AD . EB EB
sinj =~ = —~ tan i~ -z =~
If we assume r = 1 "“unit’” of any length,
then sin i = AD
and tan i = EB.

In other words, lines AD and EB are the linear representations of the
sine and tangent of angle i, respectively.

As we have shown, arc AB in the above figure equals i (in radians)
times the length of the radius. Since the radius is equal to 1, arclength
AB is equivalent to angle /.

From the diagram, let us now list these three lengths in order of
size: AD is shortest. then arclength AB, and longest is BE; thus, by
substitution

sini <i<tani.

You shouid now be able to picture what happens as angle i de-
creases; these three become just about equal to each other. So, for
relatively small angles, ¢ {in radians} is a very acceptable substitute
for the trigonometric expressions sin i and tan i. To show you how littie
error is introduced by such a substitution, ! have constructed Table II.

TABLE I
% arrod introduced % error introduced
L sin i i tan ¢ by using 1 (radians} by using i {radians}h
in degrees itrom math 1ablesh in radians (lrommathlables}  instead of sin i instead of tan §

1 017458 01745 01748 0.00% Q0%
2 03490 03490 03492 0.00% 001%
10 17365 17450 17633 4 0.49% — 1.04%
20 34202 .34300 38397 <+ 101% 4 12%
3o 50009 52350 87735 45 % — 935%
45 0711 78525 1 00000 1LY % 204 %
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This table shows the percentage error introduced by substituting i
{In radians} for sin / and for tan i for various angular measures. Three
points should be clear:

1) i is an excellent substitute for sin / and tan i for small angles,
probably up to 20°. Even for angles as large as 20°, i errs by only 2%
when substituted for sin i and 4% for tan /.

2) iis a somewhat better substitute for sin i than for tan i

3} When one substitutes / for sin i, the approximation will be
slightly too large; when using i for tan i, it will be slightly tco small.
{This is also evident by looking at the last figure, specifically at the
lengths AD, b\,w. and BE: if you compare these lines you will have a
graphical demonstration of our approximation i for sin i and tan i)

We cap investigate this approximation in still another way. When
any angle i is expressed in radians, we can find the value of sin i by
simply substituting this value of | in a mathematical "'trigonometric
expansion’’ which is the mathematica! equivalent of sin i. (Incidentally,
this is how the math tables themselves are constructed.) Don't close
your eyes! t's not that scary. That expansion is as follows:

i #
L f3l=3x2%x1)
(Bl=5x4x3X2X1)

i
m:.:H_nl.uﬂ.Tlml_l.ﬂ

Also,
R L Y A
S:-I.+m ._m+m._m+....

We can thus find the value of sin i or tan / as accurately and to as
. P
many decimal places as we wish. The question is how many of those i

terms (for sin /) must be used to be reasonably accurate. The obvious
answer, as we have shown in Table I, is that if we limit ourselves to i
of small angles, we can leave off all the terms beyond the first one;
we make almost no error in stating that sin i is equal to angle i itself
{when i is expressed in radians). This is the approximation we make
in what is called first order optics. It is somewhat analogous to using
the approximation 3.1 for =; if you need a more accurate value, you
could add another term, as 3.14. Likewise, if you need a more accurate

- . P
value for sin i, you can include the second term ﬁ.l.wﬂ too.
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when we do use the more refined value (i IWA ) for sin i in optical

calculations, we are using “‘third order” optics — note there is no
»9nd order’’. Comparable terms can also be added for tan i to increase
its accuracy. The additional degree of accuracy for both sin i and tan i
is necessary to account for some of the lens aberrations. Astronomers
may require 5th or even 7th order optics for their accurate calculations
of star positions. But, the point of importance for us clinicians is that
for everything we will learn here, we really need anly the 1st term {i}
to substitute for sin i.

First order optics includes the evaluation of object and image rays
— called paraxial rays — which lie close to the axis of refracting
systems, so that angles of incidence and refraction are relatively small.
In spite of the fact that we use large angular diagrams in this book to
elaborate certain principies, we must realize we are still only describ-
ing accurately the action of lenses on the paraxial rays.

Later, when we deal with curved refracting surfaces, we will sub-
stitute i for sin i; Snell’s Law will become simplified to n i = n'i ’, and
correctly so, as long as we do not deat with too large angles and we
axpress / in radians.

PLANE SURFACE REFRACTION

Snell’s Law governs the refraction of light rays. Without using any
approximations now, we can say, n sin i = n’ sin i,
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A light ray passing from a less dense medium to a denser one (with a
greater index n’) is bent toward the “normal™; and conversely. light
moving the other direction {from n’ toward n) is bent away from the
normal. {Remamber that all light rays are retraceable.)

“’Critical Angle’’

When light emanates from an object point located within the denser
medium {figure A below), the stage is set for a peculiar phenomenon to

occur.

A. Refraclion B. Criticel angle C. Total reflection

As angle i increases, so does angle I". Angle 7 will eventually reach a
certain magnitude such that /°, the angle of refraction, will become
equal to 90° (figure B above). At this position, i (the angle of inci-
dence) is called the “critical’” angle. If i now is increased further, even
a slight amount, the ray will not exit from medium n” at all; it will be
totally reflected” internally (as shown in C above).
Since, in this example,
n'sini=nsin¥
sini =5 (sin 7'}
n
By definition, at i... (the “critical” angle)
i* = 90°, thus sin /' — 1.00.

oo n
Therefore, 8in jon = 5
When n' represents water {n’ = 1.33) and n = 1.00 for air,
. 1
§in i = 537 = 0.76
m&... L= h.mo.

* We will take up “‘reflection” later.
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Hence, the critical angle for water is 48°, but only for a water-to-air
interface. Similarly, the sine of the critical angle for corneal tissue
1

=1376"
sini = 0,725

M.:. = #O.Mo

This point has clinical importance. Recall that, if we are to see any
object at all, light rays from it must enter our eyes. Consider the
situation of the anterior chamber angle; light rays which come from
the angle must pass out through the cornea. They do pass and are re-
fracted by the posterior corneat surface; however, because of the par-
ticular dimensions of the anterior chamber angle and its distance from
the cornea, the light rays which leave there strike the anterior corneal
surface {an interface with a greater index of refraction inside than
outside) at an angle of incidence greater than the critical angle of
corneal tissue {L 46°). So, all these rays are reflected back into the
eye. Since they are unable to escape, a ¢clinician normally is unable to
visualize the anterior chamber angle of a patient. If the cornea happens
to be ‘'steeper’” than normal {as in a patient with keratoconus), the
rays may strike the interface with Jess angular incidence than the
critical angle and thus might be able to leave the eye. So occasionally,
the chamber angle may be seen by an observer, but not usually,
(See A next figure.}

Diagnostic Goniolenses

In the typical patient, the angle can only be visualized with optical
help — by “optically” removing the corneal front surface and replac-
ing it with a new surface {or one with a different curvature) which al-
lows the light to escape. This can be done with a contact lens whose
own index of refraction is substituted for that of the air. This decreases
the difference in index of refraction across that interface and thus,
optically “‘removes’’ the original corneal surface. It works by the same
principal which causes a glass marble to disappear when it is immersed
in a dish of water. The glass ball is easily visible in air because one
“sees’” the surface due to the marked difference in index between the
glass and the air. But. when it is put into water, the indices are so
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close that the marble’'s surface is optically eliminated. Therapeutic
contact lenses® which correct corneal irregularity (as in keratoconus)
or even correct simple refractive error also work in the same way, with
any necessary prescription “corrective power’’ being ground onto the
front surface of the lens.

A. TOTAL INTERNAL REFLECTION

N

B. GOLDMANN LENS C. KOEPPE LENS

Two main types of diagnostic contact lenses are used for goni-
oscopy, the viewing of the chamber angle: a Koeppe contact lens allows
direct viewing of the angle (see Figure C; and a Goldmann type lens
incorporates a mirror so that an examiner sees a reflected or indirect
view of the anterior chamber angie on the opposite side {that is, an
upper mirror allows view of the lower angle}. {See figure B above.)

The presence of a critical angle is not always a disadvantage; it
can be used constructively. Far their useful operation., many optical
instruments require that a light beam change its direction. An ophthal-
moscope is a good example. It requires “something” to bend the light

* The subject of therapeutic corneal contact lenses Is so broad that it would be out
of place in this book and will not be discussed further here. Excellent texts {such as
Corneal Comtact Lensas by Girard, Soper and Sampson, Mosby, 1970) are available
for consultation and reference in this important clinical area.
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beam which runs parallel to the handle and change its direction by
90°. This ailows you to shine the beam into a patient’s eye while you
are observing the fundus. Another example is the typical binocular
telescope {''binoculars™); this instrument would be much longer in
dimension were it not for the fact that the light path is "folded’ inside.
The changes of light direction in both these instruments is accom-
plished by prisms which totally reflect light {as would a mirror, but
more efficiently — with fess light loss}.

,
£
=]

This total reflection is shown in the accompanying diagram above.
Since the angle of incidence i exceeds the “critical angle’” of this
prism material, the light rays are totally reftected internally. For special
purposes, many other prism forms are available which not only totally ,
reflect light but also twist and reorient the image as well, {e.g. Porro
and Abbe prisms.}

There are many other useful applications of total internal reflection,

for example, ““fiber optic’’ bundles.

FIBER OPTIC TUBULE

59



