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I you wish to construct the rays from an object through muitiple
thin lenses, you must use the same method shown here for each lens
separately and consecutively. First locate the first image by lens 1.
That image then becomes the object for the second lens; this lens
forms another image which is “"seen’ by the next lens and becomes its
object, etc. The final image is fixed when all lenses have exerted their
own particular influences on the original object rays.

LINEAR MAGNIFICATION

Though we will get into a more complate discussion later of magni-
fication as it pertains to vision, we should mention finear magnification
here to complete our image construction section,

So far we have not mentioned anything about the relationship of the
linear size of the object to that of the image. That is, when object point
A is off the lens axis, how far off the axis is the image? Simple geome-
try tells us this answer in all cases.

Aside from the lens axis, the only other ray necessary for us to see
this relationship clearly i ray 1 — that through the nodal point.

These rays establish 2 similar triangles AXN and A'X'N.
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No matter what the power of lens {plus or minus} — no matter where
the objects and images are in relation 1o the focal points — these
triangles will always be similar, even. of cowse, if the object and
image are on the same side of the lens {as in the figure above).
You should, therefore, be able to see that the sizes of the
object and image are always directly proportional 1o their distances
from the lens. The LINEAR MAGNIFICATION (M} is hereby defined as
the ratio of the size of the image to the size of the object. Refer now to
the above diagrams:
Image size | = A'X’
Object size 0 = AX
image axial distance v = NX’
object axial distance v = XN
By definition,

| A'X
M=03="ax
But since the triangles involved are similar,
A'XT NX
AX XN
| v
Thus; -7
si 1 1
tnce v = |_\.m=n U= 7.
v U
vV

S0, we have three different, but exacily equivalent, ways of expressing
the linear magnification M:

37



I v U
M= —— = — o= —

o u v
M may be greater, equal to, ar less than 1, depending on whether the

image size is {respectively} larger than, equal to, or smaller than the

object size.
That's all there is to it; and it makes no difference whether the

objects or images are real or virtual. Continue to use our same sign
convention for vergences and distances and you will find that when
Magnification Power turns out to be minus, this will always indicate
that the image is inverted compared to the object. while plus *‘says’
the image is upright.

To find the magnification M, you can use either a geometrical con-
struction {to a set scale) or our simple U + P = V relationship. The
algebraic expression is obviously the easiest and most direct method

to use routinely.

PROBLEM: What is the overail magnification and the actual size of
the projected image produced by a 5 cm focal length projection lens
using a 35 mm width slide transparency located 6 cm from the lens.
The image is sharply projected on a screen.

ANSWER:
Ta obtain the Magnification, we must know the image distance {or

its vergence) at P.

U+ P =V
1 1 1
—stoes VTV
— 167D+ 20D =V
+33D=V
._ﬂl v =+ 30 cm.
So, the screen is 30 ¢m to the right of the lens; v = — & cm
y = 30 cm
8 M=tm .Wom =—5X
Or even simpler. just use the vergences U/ and V themselves:

U —1670

M=y ~—1330 -~ 5%
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This means the image is 5 times the size of the object; the minus sign
signifies that the image is inverted related to the object.

h) Since the object is 35 mm wide and the magnification is 5 X, the
image is 5 times 35 = 175 mm wide.

PRINCIPAL PLANES AND POINTS

| would like now to introduce another set of terms to complete
{not complicate) our introduction to the nomenclature applied to
oplical systems. | will expend slightly more space on this subject than
it warrants for the level of optics required by students, but so many
budding ophthalmologists continue to ask me to explain (not just de-
fine) the concept of principal planes that | felt it would save time in
the long run to do so here.

When we were studying image formation by a series of thin lenses,
we showed that we could locate the final image by either numerical or
graphical means, but only after processing object rays successively
through each lens element in the total system. We will now demon-
strate diagrammatically 2 way to simplify the situation, even with a
compticated optical set up. {See the next figure). We will then elimi-
nate alf the refracting elements and replace them with two theoretical
{though mathematically proper) “refracting”’ planes. The positions of
these planes will be determined. These planes will permit us to neglect
all the lenses shown in the figure; thatl is, each ray emanating from
object point A will be able to be treated as if it were influenced only by
these two planes. These key reference planes are called the PRINCIPAL
PLANES — one prirmary and one secondary. Their intersections with
the lens axis are correspondingly called the PRINCIPAL POINTS.

To see how these planes are located, let us begin with a diagram;
but don’t let it frighten you. | have purposefully chosen a rather com-
plex system of seven assorted lenses to deamonstrate how these ref-
erence planes can simplify the optical considerations.
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